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Introduction 
 
An important initial screening step in the detection of breast cancer is the ability to identify select 
areas of atypical density that require further evaluation. Currently, mammography is the clinical 
standard for screening and provides useful but at times ambiguous information, which can 
necessitate further invasive workup of benign lesions. Alternative methods such as elastography 
have shown potential in enhancing the diagnostic process by providing information about the 
tissue composition [1, 2]. Modality-independent elastography (MIE) is a novel image processing 
technique that combines finite element models of soft-tissue deformation with measures of image 
similarity in order to reconstruct elastic property distributions throughout the tissue. The basic 
requirements for the method are two images of the tissue in different states of deformation (e.g. 
compression). MIE then updates the estimate of the material properties via a matching process 
between the two images. The final result is a map of the breast (or other tissue of interest) that 
reflects material inhomogeneity, such as in the case of a tumor mass that disrupts the surrounding 
structure of normal tissue.  Because MIE works on probing the differences between images, it 
can be used to not only work in concert with more traditional screening techniques but also 
address a possible gap when those methods are unable to directly discern tissues of interest. 
 
 
Body 
 
As stated in the original proposal, three main aims of this project are to (1) expand and refine the 
current MIE technique to enhance its efficiency and capabilities, (2) to perform analyses on 
texture in input images and quantify statistical parameters capable of estimating and evaluating 
the success of elastographic reconstruction, and (3) to engineer a device that can accurately 
produce compressive forces necessary for phantom setups within current imaging systems, 
providing the basis for a future device that can be used in a clinical setting. In this past year, 
progress on all three aims has been made. The original specific aim and the relevant proposed 
work for each is listed below and addressed. 
 
Specific Aim #1 stated: “To expand and refine the current MIE technique to enhance its 
efficiency, as well as add new capabilities such as handling a full 3D or combined 2D/3D 
elastodynamic model for improved accuracy.” 
 
A framework utilizing parallel processing techniques has been designed and implemented to 
accommodate a fully three-dimensional version of the MIE algorithm.  A key component, but 
also the bottleneck, of the MIE methodology is the calculation of a Jacobian matrix sensitive to 
spatial discretization.  Each column of the Jacobian matrix reprsents a single “forward solve” of 
the problem and corresponds to a single ‘elasticity region’ within the domain, encompassing a 
solution of the finite element model, image deformation, and similarity metric calculation.  In 
2D, a fairly large number of regions (about 400) were already needed to adequately sample the 
area of study and attempt to search for a presumed lesion.  For an organ that is most properly 
analyzed as a three-dimensional system, such as the breast, our initial empirc calculations 
indicated that the increase in dimensionality would necessitate upwards of 3200 regions to be 
partitioned over a [typical] volume.  In this case, the size of the finite element model itself is 
increased by nearly two orders of magnitude as well.  It was therefore apparent that the code 
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complexity and computational resource demands of 3D MIE far surpass the capabilities of the 
original 2D MATLAB/FORTRAN/LAPACK design.  In order to perform what would otherwise 
be an intractable computational problem, the MPI standard of parallel communication was used 
to split up the Jacobian formation process as a static SPMD (single-process, multiple-data) 
scheme within a C/C++ Gauss-Newton optimization.  In addition, the Portable Extensible 
Toolkit for Scientific Computation (PETSc) toolkit [3,4] was interfaced to provide the necessary 
efficient sparse matrix system solvers.  We utilized a share of 100 CPUs on the Vanderbilt 
University Advanced Computing Center for Research and Education cluster to demonstrate that 
each iteration of the optimization could be achieved on the order of 30 minutes, as opposed to 
original estimates on available sequential processing machines of upwards of 5000 minutes. We 
note, however, that to effectively traverse the entire multi-dimensional objective function space 
requires several (perhaps tens of) iterations would be required, underscoring the innately high 
computational load of the method. 
 
We have completed a preliminary study that demonstrates the new MIE framework in action, 
using simulated deformation based on clinical data obtained from both CT and MR scans.  The 
test cases involved the simulated implantation of a stiff and radiographically occult 2-cm 
spherical tumor at the center of the breast.  Guided by a finite element mesh deformation using 
prescribed boundary displacements (designed to mimic a compression source as described in 
Specific Aim 3), a target image volume was created.  Discretizations of the model and image 
domains as per the MIE methodology were then used to reconstruct the inclusion.  In both cases, 
MIE indicated that a lesion ~2x stiffer than surrounding tissue existed and was localized to the 
known position.  However, due to inexact partitioning of the mesh elements, the algorithm 
actually detected a tumor closer to 3 cm in diameter, leading to a pseudo-compensatory decrease 
in elasticity contrast in the model (the true difference in stiffness was a factor of 6).  This was 
explained by performing an a priori classification of the mesh elements into two material types 
according to their spatial membership in the 3200 regions.  After this adjustment in overlap, the 
constrained reconstructions much more favorably followed an objective function minimization 
that resulted in a stiffness contrast matching the original reconstruction.  Based on these 
experiments, it is our current assertion that shaping the objective function by dynamically 
rearranging the spatial discretization of the model during the optimization can lead to improved 
elasticity contrast resolution, and studies are underway to address this issue.  The details of the 
work described are provided within Appendix A of this document. 
 
As a further note, we acknowledge that originially proposed work involving the use of a 
combined 2D-3D model is still being considered as a means of reducing the scope of the problem 
with respect to dimsenionality.  However, the current implementation is deemed viable with 
sufficient allocation of computational resources.  In addition, further research into the effects of 
dimensionality was pursued in the context of another possible application for MIE, that is, in 
dermoscopic examination.  We simulated a spectrum of geometrical variation in size for a 
posited lesion embedded within skin (e.g. radius and depth of penetration).  Our findings indicate 
that while a thin-membrane system is capable of differentiating a stiff object from its 
surroundings for most scenarios, inevitably, a 2D approximation of the model has its limitations, 
and it is quite difficult to avoid the need to account for full spatial dimensionality. For further 
discussion, please refer to Appendix B of this document. 
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Specific Aim #2 stated: “To perform texture analysis on input images in order to quantify a 
statistical parameter capable of estimating the success of elastographic reconstruction.” 
 
Tolerance to improper input has been tested with statistical quantification of reconstruction 
success.  Our observations during the ongoing development and testing of the MIE method 
prompted questions concerning the quality of data necessary and sufficient to achieve 
satisfactory results, as well as how to evaluate the fidelity of the reconstructed elasticity image. 
The primary inputs to the reconstruction method are the acquired images and the delineated 
boundary conditions on the domain.  Our investigation began by examining a two-dimensional 
system and attempting to defeat the algorithm with increasing levels of degraded input.  We 
briefly summarize the key results of these studies as described in a previous Annual Report.  The 
first experiment used additive image noise to obscure the underlying texture to reflect possible 
scenarios of corruption during acquisition. Noise fields were created from a zero-mean Gaussian 
random distribution along the variance of non-background pixels and scaled according to the 
total power at 1, 5, 10, 15, 20, 25, and 30%.  It was found that the reconstruction was tolerant of 
image noise up to approximately 10%.  Figure 1 demonstrates the degradative effects of image 
noise. The second experiment involved boundary condition selection error.  A gold standard set 
of boundary conditions known to produce an accurate reconstruction was modified using 
randomized vectors of equal magnitude (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5, and 2.0 pixel units) 
reflecting a range of typical localization skill for users from poor to expert. It was noted that 
randomizing all the vectors can actually result in twisting of elements that resulted in significant 
alterations of displacements in the interior of the mesh, leading to grossly inaccurate model 
deformations.  
 

 
Figure 1.  2D reconstructions resulting from the distortion of the target image using additive Gaussian random noise 
(from top left: 1, 5, 10, 20, 25, 30%). The true elasticity distribution is a centrally located and roughly circular 
region, and the noise progressively confounds the reconstruction.   
 
 
We also note that the ‘quality of reconstruction score’ (QRS) was developed within the context 
of this project in order to quantify the retrospective localization accuracy of the method. In 
comparison and conjuction with more standard measures in the elastography field such as 
contrast-to-noise ratio [5], QRS has been used to determine relevant positional and material 
characterization in both simulation and data studes. The metric is determined by a classification 
of the reconstruction [6] that is then compared to the (known) segmentation of the actual 
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elasticity distribution.  By examining the rate of accurately selecting an element of the domain to 
be of the correct material class, a conditional probability closely related to the positive predictive 
value of the test is obtained; we have determined a posteriori that a QRS>80% is typically 
indicative of a successful reconstruction. The use of QRS was similarly applied to the analysis of 
our 3D MIE simulation reconstuction experiments as included in Appendix A.  
 
While we are continuing to examine the possibility of analyzing image texture prospectively for 
the purposes of predicting MIE success, we acknowledge that variability among acquisition 
systems and subjects has thus far made this extremely difficult.  Proposed work involving the use 
of a feature tracking and frequency domain analysis is under investigation but not completed at 
this time. As more data is collected, it is hoped that establishing a pattern for understanding the 
reconstruction algorithm behavior will become statistically relevant.  However, partially based 
on our preliminary findings, we believe that the natural heterogeneity of tissue is typically 
sufficient for reconstruction purposes.  Our efforts have therefore been refocused on addressing 
the practical aspects of implementing MIE outside of an in silico environment, especially with 
regards to the degradation of quality due to the (mis)estimation in the process of boundary 
condition assignment.  It is the propagation of error from this source into the model and 
downstream to the other components of the algorithm that appears to be the greatest contributor 
in an unsatisfactory reconstruction (as demonstrated in the work presented in Appendix A and 
C).  In pursuing this line of work, a number of novel as well as standard means for determining 
point correspondence to provide an accurate surface registration have been developed and tested.  
At this time, our conclusion is that utilizing a thin-plate spline is the best method.  Because this 
requires the tracking of surface markers, an level set-matching method using Laplace’s equation 
is deemed appropriate for use in the event that such fiducials are not available. 
 
Specific Aim #3 stated: “To engineer a device that can accurately produce compressive 
forces necessary for phantom setups within current clinical imaging systems, providing the 
basis for a future device that can be used in a clinical setting.” 
 
A compression device has been constructed and tested in magnetic resonance (MR) and X-ray 
computed tomography (CT) imaging systems using a polyvinyl alcohol phantom and contrast 
agents. The compression device is composed of a rectangular Plexiglas frame that traps the 
phantom in at least two directions with a sliding wall and the compression plate, which houses an 
air bladder in a polycarbonate frame (see Figure 2). When inflated, the air bladder provides a 
deformation of up to 5 cm. The prototypical phantom used  has been fabricated as a polyvinvyl 
alcohol cryogel (~250 cc, 7% wt/vol) in a manner consistent with the methods presented in [7, 
8].  A notable difference in the manufacturing process has been the addition of 10% v/v glycerol 
to the base solution.  A spherical mold is used to create a tumor replica after the application of a 
24-hour freeze-thaw cycle, which is then suspended within a primary mold for the phantom and 
frozen again within the remaining bulk material.  Contrast agents (e.g. iodine, barium, or copper 
sulfate) are added as needed to provide intensity variation depending on the imaging modality.  
The result is a domed breast-like shape approximately 10-11 cm at the base and tapering over a 
depth of about 5-6 cm.  A study of this system as used in a CT scanner has been completed, with 
elastic contrasts obtained by MIE reconstruction having been compared against independent 
mechanical testing of the cryogel materials.  Key results obtained are being prepared for a 
manuscript to be submitted soon after the preparation of this report.   
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Figure 2.  Top row: Photographs of the polyvinyl alcohol phantom inside the compression device without (left) and 
with compression (right).  
 
 
A prototype compression chamber that is more clinically oriented has been designed to fit into 
the chassis of a Philips Intera MR breast coil unit.  It has been fabricated from clear acrylic tube 
segments in which the air bladders are attached using polycarbonate pins and then covered with 
an expandable nylon sheet.  A small series of human volunteer trials have been performed to test 
the usage of the device.  To this date, no negative feedback has been given regarding its effects 
on the patient.  Figure 3 below shows the schematic design of the system as well as an overhead 
view of its assembly.  Further image acquisition studies are currently being designed to utilize 
this system. 
 

 
 
Figure 3.  Left: Schematic of compression device designed for clinical use breast coil. Right: Photograph of 
assembly looking down into the Philips Intera chassis. 
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Key Research Accomplishments 
 
● 3D implementation – Computationally complex challenges have been addressed to create an 
effective parallelized version of MIE for full three-dimensional analysis 
 
● Phantom and material creation – design, fabrication, and testing of PVA-C for the creation of 
appropriate tissue mimicking systems 
 
● Testing with phantoms – Initial testing has been performed on semi-anthropomorphic and 
appropriate breast phantoms for elastography research.  Initial testing has also been performed on 
phantoms designed for surgical simulations 
 
 
Reportable Outcomes 
 
Work on the MIE method during this period has resulted in three conference papers and an 
additional poster presentation as well as acceptance of a peer-reviewed journal article.  Didactic 
coursework requirements for the PhD degree have been completed at this time as well as 
successful presentation of the thesis proposal to a faculty committee.  
 
Poster Presentations 
 
Vanderbilt University Medical Scientist Training Program retreat (June 2006) 

 
Conference papers 
 
M. I. Miga, J. J. Ou, and D. L. Ellis, 'An elastography framework for use in dermoscopy', 
Medical Imaging 2007: Physiology, Function and Structure from Medical Images, San Diego, 
CA. 
 
J. J. Ou, R. E. Ong, and M. I. Miga, 'An Evaluation of 3D Modality Independent Elastography 
Robustness to Boundary Condition Noise', Medical Imaging 2007: Physiology, Function and 
Structure from Medical Images, San Diego, CA.  
 
R. E. Ong, J. J. Ou, and M. I. Miga, 'Using Laplace's Equation for Non-rigid Registration of 
Breast Surfaces', Medical Imaging 2007: Visualization and Image-Guided Procedures, San 
Diego, CA. 
 
Peer-reviewed publications 
 
J. J. Ou, R. E. Ong, T. E. Yankeelov, and M. I. Miga, 'Evaluation of 3D modality-independent 
elastography for breast imaging: a simulation study', Physics in Medicine and Biology, Vol. 53, 
No. 1, pp. 147-163, 2008. 
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Conclusions 
 
The current results and progress denoted in this report are within the proposed statement of work 
and are encouraging towards completion of the overall objectives with further effort. No 
significant deviations are reported at this time, although in certain regards as noted within the 
text, our efforts are being refocused towards relevant practical issues of the project that have 
become more prominent as the work has progressed.  Notable accomplishments at this time 
include the implementation of a fully 3D MIE application, further analysis of factors influencing 
elastographic reconstruction fidelity, and engineering of devices suitable for MIE data 
acquisition in both phantom and human studies.  Future work will be directed towards following 
up in all of these areas, as well as newer studies into ex vivo tissue characterization and 
collaborative clinical efforts generated from interest regarding our project.  
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Abstract
This paper reports on the development and preliminary testing of a three-
dimensional implementation of an inverse problem technique for extracting
soft-tissue elasticity information via non-rigid model-based image registration.
The modality-independent elastography (MIE) algorithm adjusts the elastic
properties of a biomechanical model to achieve maximal similarity between
images acquired under different states of static loading. A series of simulation
experiments with clinical image sets of human breasts were performed to test
the ability of the method to identify and characterize a radiographically occult
stiff lesion. Because boundary conditions are a critical input to the algorithm, a
comparison of three methods for semi-automated surface point correspondence
was conducted in the context of systematic and randomized noise processes.
The results illustrate that 3D MIE was able to successfully reconstruct elasticity
images using data obtained from both magnetic resonance and x-ray computed
tomography systems. The lesion was localized correctly in all cases and its
relative elasticity found to be reasonably close to the true values (3.5% with
the use of spatial priors and 11.6% without). In addition, the inaccuracies
of surface registration performed with thin-plate spline interpolation did not
exceed empiric thresholds of unacceptable boundary condition error.

1. Introduction

Breast cancer is the most common cancer of women in the United States, the second most
common cause of cancer death in women and the leading cause of death in women aged 45
to 55. Estimates for the year 2007 indicate that 178 480 American women will be diagnosed
with the disease and 40 910 women will die from it (ACS 2007). While many advances have
been made in the treatment of the disease, the ability to detect its presence for either screening
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or diagnostic purposes remains an area of active research involving many novel forms of
imaging. The characterization of the mechanical properties of breast tissue is an important
potential source of clinical information because of the long-standing association of palpable
differences in stiffness with possible pathological states. A minimally invasive methodology
for analyzing tissue elasticity through imaging and/or image processing techniques is a central
goal of the field of elastography (Parker et al 2005), with the application of various techniques
being found not only in the interrogation of the breast (McKnight et al 2002, Melodelima
et al 2006, Sinkus et al 2000), but also in skin (Miga et al 2005, Tsap et al 1998, Zhang et al
2004), prostate (Curiel et al 2005, Egorov et al 2006) and other accessible organ systems.

Many of the current elastography methods are founded in ultrasound (US) (Ophir et al
1991, 2000) and magnetic resonance (MR) (Manduca et al 2001, Muthupillai et al 1995)
imaging and involve the estimation of induced displacements within the tissue of interest to
infer the elasticity distribution. We have recast the problem as a physically constrained, non-
rigid image registration utilizing numerical models of static deformation with image similarity
metrics to reconstruct the spatial distribution of elasticity parameters. This technique has
been termed ‘modality-independent elastography’ (MIE) (Miga 2002, 2003, Washington and
Miga 2004) because of its ability to handle anatomical images from different sources with
relatively simple modifications to the acquisition procedure. To date, data from MR, x-ray
computed tomography (CT) and digital photography have been used to successfully drive the
algorithm in two-dimensional (2D) work. Others have also pursued similar approaches within
the context of ultrasound elastography (Garra et al 1997, Gokhale et al 2004, Sarvazyan et al
1995), optical image analysis (Tsap et al 1998) and to a lesser extent with magnetic resonance
elastography (Fowlkes et al 1995). While the use of MIE in 2D has been illuminating for
algorithmic development and may have its own applications in studying the more planar
system of the skin, ultimately, translation of the method to utilize volumetric data is desirable
(if not necessary) in order to provide an accurate representation of organs such as the breast as a
whole. In this work, we present a newly realized three-dimensional (3D) version of MIE along
with simulation experiments to evaluate its performance. In addition, some potential effects of
degraded input quality are addressed by examining robustness of the algorithm to inaccuracies
under specified boundary conditions and then comparing the reconstruction fidelity of three
different techniques developed for semi-automatic generation of boundary conditions.

2. Methods and materials

2.1. MIE reconstruction framework

The conceptual framework for our elastographic reconstruction has been previously described
in Miga (2002, 2003), Miga et al (2005) and Washington and Miga (2004)). To review, an
image of a tissue of interest (source) is deformed by a biomechanical model and compared
against an acquired image of the same tissue in a mechanically loaded state (target). Iterative
updates of elasticity parameters to the model are performed until a suitable match in image
similarity is achieved in a least-squares manner to satisfy a nonlinear optimization scheme.
This process as illustrated in figure 1 can be classified as an inverse problem, with model-based
deformation and registration of the source image representing the forward problem.

The three major components of the reconstruction algorithm are the biomechanical model,
image comparison and the optimization routine. Although there are a number of models for
soft-tissue mechanics, it is reasonably appropriate to begin with a general elastic body. The
partial differential equation (PDEs) that expresses a state of mechanical equilibrium is

∇ · σ = 0 (1)

10
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Figure 1. Schematic of MIE framework. After acquisition of image data, surface representations
are segmented from the pre- and post-deformation volumes (source and target, respectively).
A number of pre-processing steps are performed to generate boundary conditions for the
biomechanical model, which produces a deformed image that can be compared with the true
target volume. The optimization routine updates the elasticity distribution until the best similarity
is achieved.

where σ is the Cartesian stress tensor (Boresi and Chong 1999). We have elected to describe
the constitutive tissue behavior using Hooke’s law of linear elasticity, which states that the
strain is proportional to the applied stress, and further assume that materials are isotropic and
nearly incompressible in nature. The description of the constitutive relationship between stress
and strain is ultimately expressed in terms of the elasticity parameters E (Young’s modulus)
and ν (Poisson’s ratio).

A finite element representation of the model is constructed from the source image.
Elements of the mesh are grouped using a K-means algorithm by initializing a number (N) of
seed points that are the centers of the clusters and iteratively minimizing their summed distance
to all element centroids in the mesh. This process defines a set of nearly equally sized but
spatially non-uniform regions that are homogeneous with respect to their material properties
and establish the ‘resolution’ of the reconstructed elasticity image. After assigning appropriate
boundary conditions based on estimated displacement or stress, the standard Galerkin method
of weighted residuals (Lapidus and Pinder 1982) is used to construct a matrix system. The
solution of that system yields displacements that are used to deform the source image. A
second discretization is performed by binning the target image into M groups of contiguous
voxels termed zones. The model-deformed image is then compared to the target by summing
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the similarity metric evaluated for all zones. The correlation coefficient (Fitzpatrick et al
2000) is used throughout this work as it has empirically demonstrated better performance
for our method over other intensity-based metrics such as the sum of squared differences
and normalized mutual information. Optimization of the elasticity parameters is taken as the
minimization of the objective function:

� = |STRUE − SEST|2 (2)

where STRUE is the set of similarity values achieved when comparing the target image to itself,
SEST is the similarity between the target and model-deformed source images using current
estimates of the elastic modulus distribution and |•| denotes the vector L2-norm. Note that by
definition, STRUE for the correlation coefficient has a constant value of 1. Differentiating (2)
with respect to the elasticity distribution and setting the resulting expression equal to zero
generates a series of nonlinear equations that can be solved using the Levenberg–Marquardt
method:

[JT J + αI ]{�E} = [JT ]{STRUE − SEST}

α2 = λ

[
1

N

N∑
i=1

(JT J)ii

]
�2

(3)

where J is the Jacobian matrix of size M × N and �E is the vector of updates to the material
property distribution defined by the regions. The regularization parameter α uses an empirical
scalar factor λ as determined by the methods described in Joachimowicz et al (1991). Each
column of the Jacobian matrix is a finite difference approximation of the change in image
similarity over all zones due to the perturbation of a single material property region, such that

J ≡ ∂SEST

∂E
=




∂S1

∂E1

∂S1

∂E2
· · · ∂S1

∂EN

∂S2

∂E1

. . .
...

...
. . .

...

∂SM

∂E1
· · · · · · ∂SM

∂EN




. (4)

Modulus values contained in E are updated by �E until an error tolerance on the relative
objective function error evaluation is reached or a maximum number of iterations are
completed. Spatial averaging of elasticity values in the model and solution relaxation between
iterations are also utilized to improve the stability of the optimization.

2.2. Parallel computing framework

The transition of this method from 2D to 3D entails a much higher computational overhead
that affects all parts of the reconstruction. The mesh needed to describe the entire breast as
opposed to a single slice is at least 20–40 times greater in the number of structural components
(nodes and elements), and the model must account for an additional degree of freedom. The
resulting system of equations to be solved is thus nearly two orders of magnitude larger.
The finite difference approximation of each column of the Jacobian matrix requires a ‘forward
solve’ consisting the biomechanical model, image deformation and evaluation of the similarity
metric. Because this must be done for every elasticity region, attempting to adequately sample
the spatial domain makes the building of this matrix the primary expenditure of computing
resources.

12
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In order to achieve a reasonable level of performance, the Message Passing Interface
standard for parallel processing is used to distribute formation of the Jacobian among a
number of communicating nodes controlled within a static single process, multiple data
(SPMD) scheme. The Portable Extensible Toolkit for Scientific Computation (PETSc) (Balay
et al 2004, 1997) has provided the necessary coding base for interfacing sparse matrix
system solvers with our C/C++ Gauss–Newton optimization routine. This design scales
readily to the number of processors available; it has been tested on a homogeneous cluster of
18 processors (2.0 GHz Pentium4 Xeon, 1 GB RAM) located in the laboratory, as well as a
heterogeneous cluster of hundreds of processors available through the Vanderbilt Advanced
Computing Center for Research and Education project. The use of many processors is capable
of producing a nearly linear speedup and otherwise agrees in principle with the performance
impact suggested by Ahmdahl’s law (Ahmdahl 1967).

2.3. Simulation experiment setup

For this work, a simulation experiment is defined by the creation of an idealized target
image volume from a deformation achieved by the specification of boundary conditions at the
surface of the breast. This ensures data fidelity in order to effectively evaluate reconstruction
performance in the optimization and model characteristics. Two image volumes of human
breast were made available to further test the modality independence of the algorithm. The
first was obtained from a dedicated breast CT scanner (256 × 256 × 130, voxel size 0.6 mm3)
as described in Boone et al (2006), (2001) and Boone and Lindfors (2006) and the second
from a Philips Achieva 3.0 T MR unit (256 × 256 × 98, voxel size 1.0 mm3) using a clinically
approved transmit–receive double-breast coil to acquire a 3D T1-weighted exam with a fat-
nulling inversion pulse (TR/TE/a/NEX = 4.6 ms/2.3 ms/10◦/1) (Yankeelov et al 2007).
The surfaces of the breast were segmented (ANALYZE 6.0, Mayo Clinic, Rochester, MN) to
create tetrahedral meshes composed of 39 013 nodes connected in 214 163 elements for the
CT volume and 20 623 nodes and 111 142 elements for the MR volume. A 2 cm spherical
tumor was synthetically implanted in the center of each mesh by assigning a stiff modulus
to appropriate member elements that was six times higher than the surrounding material
(Krouskop et al 1998, Samani et al 2007). Tissue deformation was performed by creating
a set of displacements calculated to approximate a Gaussian stress distribution applied to a
rectangular area on the lateral surface of the breast. The displacements were then applied to
the original volumes in order to create the desired target images. Figure 2 illustrates the setup
of the simulation data.

2.4. Reconstruction experiments

Reconstructions using spatial a priori knowledge of the location and size of the inclusion
were first performed in order to constrain the problem, as well as the computational expense
of the Jacobian matrix, to a two-material discrimination of relative stiffness (elastic contrast).
A second set of experiments was then used to address the viability of the method to perform
a generalized detection of the lesion with no knowledge of the actual structure of the domain.
To run these naive reconstructions for the CT data set, 3180 material regions and 733 voxel
similarity zones were partitioned, while in the MR data set, 3166 regions and 768 zones
were used. In all cases, the reconstruction was initialized with a homogeneous elasticity
distribution, and the value of Poisson’s ratio held constant at ν = 0.485 to represent a nearly
incompressible material.
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(a) (b)

Figure 2. (a) CT data set and (b) MR data set used for 3D MIE simulations. Surface renderings
of the image volumes (top row) and meshes (bottom row) are shown for the pre- (source) and
post-deformation (target) scenarios.

2.5. Evaluating boundary condition influence

In addition to image acquisition, the other major input to the reconstruction algorithm is the
delineation of boundary conditions on the region of interest over which the model is applied.
While relatively easy to control in simulation, in a real clinical situation, this presents the
challenge of accurately determining point correspondences between the source and target
breast surfaces. The effect of any inaccuracies is cumulative, as errors are propagated from the
model to the image deformation and finally the similarity measurements. In previous 2D work,
manual delineation of boundary conditions was possible with guidance and correction using
standard computer input devices (i.e. a mouse). However, the increased complexity of mesh
geometry in 3D necessitates a more automated technique of determining correspondence
between two surfaces. Potentially non-trivial random and/or operator-dependent noise is
introduced into any generated boundary conditions. Therefore, the following experiments
were performed to examine the ability of the algorithm to tolerate various types of mis-
mappings.

2.5.1. Robustness to randomized boundary errors. The gold standard boundary conditions
used to create the simulated target image volumes were deliberately disrupted to examine the
effect of random noise on reconstruction fidelity. A series of magnitudes ranging from 0.01 to
2.0 voxel units (mesh coordinates normalized by their respective spacing in image space) were
applied to the CT and MR data sets. Therefore, every boundary position is displaced by the
same amount but in a completely unpredicted manner, as illustrated in figure 3. These altered
boundary conditions sets were utilized in the reconstruction of the a priori two-material test
case, and the tolerance of the method was evaluated by calculating the average reconstructed
elasticity contrast ratios over four trials of each level of noise, with deviations less than 20%
from the true stiffness being deemed acceptable.

2.5.2. Feasibility of automated boundary condition generating methods. Three methods of
surface registration and point correspondence were considered as the basis of a semi-automated
method for determining boundary conditions input to the reconstruction algorithm. Two were
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(a) (b)

Figure 3. Examples of distortion due to additive randomized error. For effect, noise of 2.0 voxel
units is shown as applied to the gold standard boundary condition set for CT (a) and MR (b). At
these extreme levels, the smooth surface of the breast as originally captured in figure 2 is completely
lost, and the forced reconfiguration of internal elements in the finite element mesh adversely affects
all aspects of the reconstruction.

specifically developed for this work by attempting to use potential energy distributions derived
from classic PDEs for surface matching, and the other is a free-form geometrical warping.

If the flow of a hypothetical substance over both the source and target breast surfaces is
taken to be a conserved process and modeled using potential theory, correspondence can be
assigned by matching areas of similar energy deposition, that is, the equivalent level sets. The
algorithm for the PDE-based surface matching methods can be summarized in the following
steps:

(1) Determine an energy distribution for each surface. Laplace’s equation is commonly used
to describe the steady-state distribution of potential energy � in a system:

−∇2� = 0. (5)

Similarly, the diffusion equation describes the temporal change in potential over a region:

∂�

∂t
= D∇2� (6)

where D is the diffusion coefficient. Each PDE is solved over both breast surfaces (source
and target). For both equation (5) and (6), the nipple is assigned as an area of high
potential energy. Additionally, with equation (5), nodes at the chest wall are assigned a
value of 0 in order to obtain a non-trivial solution, whereas the propagating front produced
by (6) is artificially halted at the chest wall boundary. While both PDE solutions similarly
establish an energy gradient over the breast surfaces, their application in the following
steps results in more apparent differences.

(2) Determine correspondence between energy distributions. From the solution of the PDEs
on the source surface, a series of spatially distributed isocontours representing distinct
potentials are determined. For each level set, an isocontour of equivalent potential energy
is found on the target surface and the two curves matched according to the symmetric
closest point method described by Papademetris et al (2002).

(3) Generate boundary conditions. By extracting a number of isocontours of different values,
the resulting point correspondence vectors define a relatively dense 3D displacement field.
The displacement for each boundary node can then be interpolated from the set of its
nearest neighbors.
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The final method employs thin-plate splines (Goshtasby 1988) to generate a set of
boundary conditions. In this well-established method of non-rigid transformation, a number
of control points with known correspondences establish constraints on the deflection of
a hypothetical thin sheet of material in order to best warp the two surfaces together.
Displacements at each boundary node are then simply interpolated from the calculated fit.
For these simulation experiments, a subset of boundary nodes was used to represent physical
markers on the breast surface. Forty points were uniformly distributed over the CT mesh
and eighty for the MR mesh in order to handle the more highly variegated shape of the latter
data set.

The automated methods were initially evaluated according to their target registration error
(TRE), which was calculated as the average Euclidean distance between the generated and true
boundary conditions. Because the deployment of these fits represents a more correlated form
of noise, these boundary conditions were also applied to the two-material (a priori) scenario
and the reconstructed elasticity contrast values compared to the trials of additive randomized
error for which the magnitude was approximately equal to the TRE. Finally, a mapping of the
objective function space was performed by calculating the similarity values for model-based
image deformations over a range of elasticity contrasts from 0.5:1 to 30:1. An interpolating
curve was fit to extract the minimum objective function value and associated contrast ratio
to determine a theoretical optimal reconstruction as constrained by the estimated boundary
conditions.

3. Results

3.1. MIE reconstructions

Because the use of a priori spatial information about the inclusion limits the reconstruction
to a two-material system, the fidelity of the reconstruction is simply evaluated by examining
the elastic contrast between the inclusion and the normal tissue of the breast (ideal of 6:1).
Figure 4 demonstrates the behavior of the algorithm in optimizing the objective function while
successfully characterizing the stiffness of the inclusion to within 5% of the actual value
(6.02:1 and 6.21:1 for the CT and MR data sets, respectively).

The fidelity of the generalized reconstruction experiments (using no a priori knowledge of
the domain) was primarily evaluated on its ability to detect the presence of an inclusion based
on classification of the material property distribution as well as the retrospective accuracy of
localizing the lesion. The final elasticity values were treated as a Gaussian mixture of two
classes and separated by a threshold established via the method described in Otsu (1979).
The likelihood of discriminating a lesion in the resulting elasticity image was found using the
contrast-to-noise ratio (CNR) as defined by Bilgen (1999) and Doyley et al (2003):

CNR =
√

2(µL − µB)2

σ 2
L + σ 2

B

(7)

where µ and σ 2 are the sample mean and variance of a material property distribution and the
subscripts L and B denote the lesion and normal material types, respectively. As a quantitative
assessment of the localization of the lesion, the positive predictive value of correctly identifying
a lesion material within the known segmented region of the inclusions was also calculated as a
‘quality of reconstruction score’ (QRS). This value is significant because identification of the
lesion border and material classification are done independently, so user knowledge of the test
scenario does not influence the performance of the measure. The ‘true positive’ (TP) elements
of the mesh are counted as the number correctly identified as tumor and lying within the

16



Evaluation of 3D modality-independent elastography for breast imaging 155

(a) (b)

(c) (d)

Figure 4. Optimization behavior of reconstructions using a priori knowledge of the inclusion
location. For the CT simulation, the objective function evaluation (normalized to the initial
dissimilarity value of a homogeneous elasticity distribution) and elastic contrast over several
iterations of the algorithm are shown in panels (a) and (b), respectively. Similarly, this behavior for
the MR data set is displayed in (c) and (d). In each case, the minimum value is achieved quickly
and stably, with the corresponding contrast ratio matching the true value of 6:1 very closely (6.02:1
and 6.21:1 for CT and MR, respectively).

Table 1. Evaluation of reconstruction fidelity for lesion detection.

CNR QRS (%) Max CR (×:1) Optimal CR (×:1)

CT 3.55 99.4 2.66 3.01
MR 3.93 99.7 2.02 2.26

Max CR: maximum elasticity contrast between lesion and normal tissue in naive reconstruction.
Optimal CR: optimal elasticity contrast after accounting for overlap in elasticity region partitioning.

known segmentation of the lesion, while the ‘false positive’ (FP) elements are those identified
as tumor but in an incorrect location. Thus, the calculation of QRS is simply TP/(TP + FP).
Cutoffs for successful detection and localization were set at CNR � 2.2 as noted by Doyley
et al (2003) and QRS � 80% as empirically determined by a prior study in 2D MIE work
(Ou et al 2006a, 2006b), and both the CT and MR reconstructions successfully identified the
embedded lesions according to these criteria (see table 1).

The peak modulus contrast value of a reconstruction was calculated by taking the ratio of
the average elasticity for manually selected homogeneous regions of the approximately equal
area known to be representative of the two materials. As reported in table 1 and visualized
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Table 2. Effect of applied random boundary condition noise on objective function space and
reconstructed elasticity contrast ratio. The respective ranges where a cutoff in reconstruction
tolerance was observed are listed for each simulation set.

CT MR

Randomized Mean optimal Randomized Mean optimal
vector magnitude elasticity contrast vector magnitude elasticity contrast
(voxel units) value (×:1) (voxel units) value (×:1)

0.1 5.62 ± 0.421 0.01 6.33 ± 0.096
0.2 5.70 ± 0.588 0.02 6.75 ± 0.058
0.3 5.97 ± 0.846 0.03 6.93 ± 0.634
0.5 2.36 ± 0.393 0.05 7.60 ± 0.821
1.0 2.47 ± 0.266 0.1 9.35 ± 1.27
2.0 2.17 ± 0.422 0.2 11.3 ± 0.866

Table 3. Reconstruction performance as affected by semi-automated boundary condition
generation methods. The mean error of surface registration is related to the accuracy of
characterizing the lesion stiffness.

CT MR

TRE Elasticity TRE Elasticity
Method (mm) contrast (×:1) (mm) contrast (×:1)

Diffusion 1.5 17.5 0.61 348
Laplace 0.52 5.02 0.48 673
Thin-plate spline 0.26 5.66 0.023 6.26

in figures 5 and 6, the characterization of the relative stiffness is less than the true elasticity
contrast by nearly a factor of 3 in both cases. This reveals a difficulty with large inverse
problems in 3D where a need for reasonable performance can lead to a tradeoff in accuracy.
By choosing approximately 3200 regions to cover the domain of the breasts for the naive
reconstructions, the number of degrees of freedom presented to the optimization scheme is
quite high. However, this is also relatively coarse in the sense of visualizing the reconstruction,
as it roughly corresponds to a 15 × 15 × 15 image volume. Because the elasticity regions
do not conform perfectly to the actual lesion borders and furthermore comprise both the
tumor and healthy tissue, it seemed reasonable to surmise that in this mis-estimation of spatial
extents the algorithm was forced to attempt a best-fit compromise. To test this hypothesis, we
agglomerated all regions in the original partitioning that overlapped the tumor and then ran
the reconstruction again as a two-material characterization. Upon inspection, this re-grouping
was clearly a larger entity than the tumor itself (closer to 3 cm in diameter) and resulted in a
shift of the global optimum to a lower elasticity contrast. In effect, the model reacted to this
new, oversized tumor by reducing its stiffness in order to achieve the proper image similarity
match. When viewed in light of this analysis as summarized in table 1, the elasticity contrast
found by the naive reconstruction is then actually quite accurate.

3.2. Evaluating boundary condition influence

3.2.1. Robustness to randomized noise. Table 2 demonstrates that as the magnitude of
the applied randomized noise vectors was increased, changes in the reconstructed elasticity
contrast reflected a decreased ability to achieve a successful result (recall that the correct ratio
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(a) (b)

Figure 5. Reconstruction used for lesion detection in the CT data set. (a) Orthogonal views
taken through the center of the elasticity image volume are shown along with a projection surface
rendering (lower right). The simulated inclusion implanted in the mesh is visually distinguished
from the surrounding tissue. The color bar indicates the range of elasticity values (∼7–42 kPa)
designated by the reconstruction, with higher (stiffer) values shown in the white end of the grayscale
mapping. (b) Transect plots through the center of the volume along the cardinal directions show
the profile of elasticity contrast (dotted lines) overlaid by the true profile of the simulation (solid
lines).

(a) (b)

Figure 6. Reconstruction used for lesion detection in the MR data set. (a) Orthogonal views
taken through the center of the elasticity image volume are shown along with a projection surface
rendering (lower right). Once again, the inclusion appears to have a recognizably different elasticity,
with values on the color bar ranging from ∼10–57 kPa. (b) Transect plots through the center of the
volume along the cardinal directions show the profile of elasticity contrast (dotted lines) overlaid
by the true profile of the simulation (solid lines).

is 6:1). For the CT simulation, on average, errors of 0.5 voxel units or greater showed a
dramatically reduced ability to accurately characterize the stiffness of the lesion. Similarly,
though at a much smaller scale, the MR simulation began to have noticeable difficulty in
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Figure 7. Three candidate automated methods for MIE boundary condition generation applied to
simulation CT data. Top row, from left to right: surface deformations calculated from diffusion
energy matching, Laplace solution energy and thin-plate spline interpolation. Bottom row: target
registration error (TRE) distribution for each method when compared against the gold standard
of known correspondence. The diffusion-based mesh is both qualitatively and quantitatively the
worst performer. The Laplace solution appears to capture the shape of the bladder indentation
more precisely, but the thin-plate spline has the best overall accuracy in determining point
correspondence.

achieving a reasonable reconstruction at noise levels of 0.05 voxel units. These values were
taken as suitably conservative measures for evaluating the efficacy of boundary conditions
generated by the semi-automated methods.

3.2.2. Reconstruction effects of generated boundary conditions. The accuracy of each
automated boundary condition technique described in section 2.5.2 was assessed by the TRE
with respect to the gold standard boundary condition set and its ability to characterize the
elastic contrast in the two-material reconstruction test case. Figure 7 depicts the deformation
fields as applied to the CT data. Qualitatively, the displacements found by the diffusion
method are quite different from the true set, while the results from the solution of Laplace’s
equation and the thin-plate spline interpolation appear to be more satisfactory. As shown in
table 3, the mean TRE of the three methods confirms that the spline-based method has the best
performance (0.26 mm), the Laplace method next (0.52 mm) and the diffusion method being
the worst (1.5 mm). Inspection of figures 8 and 9 further demonstrates that the imposition
of an inexact boundary condition set on the model has a distinct effect on the optimization
by shifting the objective function minimum value to a different optimal elastic contrast ratio.
Additionally, the convexity of the objective function is lost in the cases with a higher TRE.
The differences in the generated boundary condition sets for the MR simulation are not easily
visualized but follow a similar performance trend (TRE of spline 0.023 mm, Laplace method
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(a) (b)

(c)

Figure 8. Mappings of objective function value versus elasticity contrast ratio (tumor:breast)
affected by the boundary condition sets generated from the different automated methods of surface
point correspondence as applied to the CT data set. The minimum value of each curve corresponds
to the altered optimal elasticity contrast when constrained by the inaccuracies of the methods:
(a) diffusion, (b) Laplace and (c) thin-plate spline interpolations. The ordinate is normalized to the
initial value of each case. The global minimum of (a) is out of range of the plot.

0.48 mm, diffusion 0.61 mm). For both simulations, there exists a direct relationship between
a low TRE and increased reconstruction fidelity in characterization of the elasticity contrast
of the lesion.

4. Discussion

As other researchers have noted, the incorporation of a priori information can greatly
enhance the performance of their elastography methods (Doyley et al 2005, 2006). We
recognize that the judicious use of information regarding lesion morphology as obtained
from conjunctive imaging studies and post-processing would potentially aid MIE as well,
especially in reducing the number of search parameters and improving initialization of the
algorithm. The reconstructions using a priori spatial knowledge of the inclusion were
initially intended to simply illustrate that the objective function space formed by using an
image similarity metric was smooth and readily traversed by the algorithm in a manner
expected for a Gauss–Newton optimization. However, they also provide a stark contrast to
the naive lesion detection test cases, which were performed to evaluate the inverse problem
framework and demonstrate its ability to analyze the full 3D domain of the breast. The results
of the generalized reconstructions are very encouraging in having successfully identified
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(a) (b)

(c)

Figure 9. Mappings of objective function value versus elasticity contrast ratio (tumor:breast)
affected by the boundary condition sets generated from the different automated methods of surface
point correspondence as applied to the MR data set. The minimum value of each curve corresponds
to the altered optimal elasticity contrast when constrained by the inaccuracies of the methods:
(a) diffusion, (b) Laplace and (c) thin-plate spline interpolations. Again, the ordinate is normalized
to the initial value and should not be interpreted as an equivalent scale for each case. The global
minima of (a) and (b) are out of range of the plot.

and localized the inclusions. Although the discretizations of the meshes did not achieve
particularly accurate material characterizations, the optimal elasticity contrast as dictated by
the available objective function was matched in each case to within 12%. The observation that
mis-estimation of the lesion extent altered the underlying test scenarios suggests that
investigating methods of dynamically adjusting region assignment could facilitate shape
resolution and concomitantly better elasticity contrast ratio values.

In translating MIE and its associated technologies to a clinical setting, a number of factors
must be considered for realistic deployment. From an implementation and performance
perspective, the large size of the inverse problem necessitated the careful selection of matrix
solvers and programming of parallel computing routines that proved effective with the
availability of a number of processors. Initial predictions based on sequential execution
times needed to handle the high degrees of freedom in the naive reconstructions were thus
reduced from two weeks to several hours. Additional challenges were eventually overcome in
the pre-processing load of image segmentation, model generation and partitioning schemes.

The results presented in this paper also further our understanding of how the loss of
input data quality, whether through design limitations or unpredictable factors, could have a
significant impact on the end reconstruction. In particular, the proper application of accurate
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boundary conditions plays a critical role in MIE reconstruction success. This is due to the
link between surface shape matching and subsequent interpolation of internal displacements
in affecting sub-surface image intensities and similarity measurements. The results of the
boundary condition noise experiment are interesting because they indicate that some level of
improper localization of surface point correspondence is reasonably tolerated by the algorithm.
However, perturbations greater than an empirically observed threshold can impair its ability
to determine the underlying elasticity distribution. This is a similar result to prior work done
in 2D systems for which successful reconstructions correlated to boundary condition selection
errors limited to half a pixel length (Ou et al 2006b). It also confirms that randomizing the
vectors for the additive noise experiments poses a considerable challenge to the algorithm
because of the introduction of grossly non-physical deformations in the finite element mesh
that decrease the stability of the numerical model. We observed that the threshold for the
MR simulation was an order of magnitude less than that of the CT set and initially seemed
to require an unfeasible level of accuracy, as well as quite a few more fiducials. These key
differences are likely related to image resolution (the MR volume had fewer slices and a
larger voxel spacing) and to the inherent differences in soft-tissue contrast between the two
modalities. Both issues present interesting questions that will be explored in future work.

The implausibility of performing manual selection on all boundary nodes of a 3D mesh
(there were 6319 points for the CT and 5416 for the MR set) underscores the importance
of finding an automated method for determining point correspondences. In general, energy
matching from the solutions of the diffusion and Laplace equations yielded boundary condition
sets that were inadequate for reconstructing a proper elasticity contrast. This can be partly
explained because the TRE of those surface registration techniques (as compared to the gold
standard) was typically greater than the permissible value established by the robustness tests.
The primary manifestation of these poor matches was that the model often had difficulty in
obtaining a stable solution. Indeed, only the boundary conditions generated by thin-plate spline
method, which had the least error, were able to consistently achieve successful reconstructions
while also satisfying the putative cutoffs. Overall, the reconstruction behavior for this method
was consistent to within 6% of the true value. This appears to recommend the use of thin-plate
spline interpolation as a strong candidate for generating boundary conditions for MIE.

5. Conclusions

In this work, we have presented the first fully 3D realization of the MIE algorithm
and preliminary evaluation of accompanying strategies for automated boundary condition
deployment. The use of parallel processing enabled a practical implementation of a
computational problem that might otherwise prove intractable. Simulation experiments
demonstrate the viability of the method to utilize images obtained from different sources
in reconstructing an embedded lesion with or without the benefit of a priori information
concerning its location and size. We have also characterized the robustness of the elastography
method to inaccuracies in boundary condition inputs derived from either random noise
or by surface point correspondence methods. These results should prove valuable in the
customization and streamlining of data acquisition and pre-processing for forthcoming clinical
tests.
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ABSTRACT 

 Multiple skin conditions exist which involve clinically significant changes in elastic properties.  
Early detection of such changes may prove critical in formulating a proper treatment plan.  However, 
most diagnoses still rely primarily on visual inspection followed by biopsy for histological analysis.  As a 
result, there would be considerable clinical benefit if a noninvasive technology to study the skin were 
available.  The primary hypothesis of this work is that skin elasticity may serve as an important method 
for assisting diagnosis and treatment.  Perhaps the most apparent application would be for the 
differentiation of skin cancers, which are a growing health concern in the United States as total annual 
cases are now being reported in the millions by the American Cancer Society.  In this paper, we use our 
novel modality independent elastography (MIE) method to perform dermoscopic skin elasticity 
evaluation.  The framework involves applying a lateral stretching to the skin in which dermoscopic 
images are acquired before and after mechanical excitation.  Once collected, an iterative elastographic 
reconstruction method is used to generate images of tissue elastic properties and is based on a two-
dimensional (2-D) membrane model framework.  Simulation studies are performed that show the effects 
of three-dimensional data, varying subdermal tissue thickness, and nonlinear large deformations on the 
framework.  In addition, a preliminary in vivo reconstruction is demonstrated.  The results are 
encouraging and indicate good localization with satisfactory degrees of elastic contrast resolution.  

KEY WORDS:  Elastography, Dermoscopy, Mechanical Properties, Finite Element, Image Similarity, 
Elasticity Imaging 

1. INTRODUCTION

 Because multiple conditions exist which involve clinically significant changes in skin elasticity, 
early detection of such changes could prove critical in formulating a proper treatment plan.  However, 
most diagnoses still rely primarily on visual inspection followed by biopsy of suspect areas for 
histological analysis.  Perhaps the most apparent application would be for the differentiation of skin 
cancers, which are a growing health concern in the United States as total annual cases are now being 
reported in the millions by the American Cancer Society1.  Of the three major types of skin cancer 
reported annually, basal cell carcinoma (BCC) makes up approximately 800,000+, squamous cell 
carcinoma (SCC) cases number approximately 200,000+, and a remaining 60,000+ melanoma cases. With 
respect to BCC, approximately 5-10% of these can be aggressive and infiltrate the surrounding tissue and 
sometimes into bone and cartilage.  It rarely metastasizes but can cause scars and disfigurement.  With 
respect to SCC, early detection is the key to successful treatment.  If left unchecked, SCC can also cause 
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disfigurement and typically approximately 3-4% of cases results in metastasis which is usually fatal.   
Melanoma is the most fatal.  Melanoma is malignant and if left unchecked, it will spread to other parts of 
the body, becomes difficult to treat, and can be fatal.  If one were to include among the common cancer 
statistics, aggressive BCC’s and metastatic SCC’s, skin cancer would likely be the second most prevalent 
among newly diagnosed cancers. 
 While the above statistics are compelling, when speaking to lethality, skin cancer is less 
significant than its more fatal counterparts in breast, lung, colon/rectal, and prostate.  However when 
considering the economic cost that skin cancer incurs on US healthcare, the pursuit of skin cancer 
characterization has considerable merit.  The ability to differentiate benign from malignant, and 
aggressive from non-aggresssive skin lesions would provide considerable savings to health care costs 
within the United States.  Each year it is estimated that approximately 5-7 million patients undergo 
biopsies for skin cancer with only a fraction resulting in malignancies.  While complete multi-center 
biopsy studies have not been performed, one study that took place documented the percentage of skin 
biopsy specimens that were malignant, i.e. they termed this the “malignancy ratio” 2.  In this study, the 
malignancy was approximately 40% with a very wide variability among the 22 dermatologists (13.4-
86.6%) that participated in the study.  If one considers 5 million biopsies, this would translate to 
approximately 3 million unnecessary biopsies per year, and approximately $300-600 million in saved 
expenditures per year 3, 4.  Furthermore, this does not even include cosmetic surgery costs in the case of 
scarring or complications associated with bleeding and infections.  If an inexpensive imaging device 
could differentiate lesions with reasonably high specificity and sensitivity, it would have considerable 
significance.
 It should also be noted that measuring cutaneous elasticity is also potentially important to medical 
areas outside of clinical dermatology. For instance, in a recent study of 100 women receiving hormone 
replacement therapy, Pierard et al demonstrated a positive correlation between bone mass density and 
skin elasticity 5, 6.  Another study conducted by Yoon et al showed a similar relevance for patients 
afflicted with diabetes mellitus 7.  Further uses for evaluating skin elasticity range from surgery 
(minimization of scarring, chronic graft versus host disease) to rheumatology (scleroderma, lupus) to 
obstetrics (striae development in pregnancy) 8-12.

With respect to diagnostic technological advances, developments have been concerned with 
obtaining a better view of the skin, either via improved optics (i.e. dermoscopy) or by more advanced and 
novel imaging systems ranging from high-frequency ultrasound to confocal laser microscopy 13, 14. Other 
strategies involving electrical impedance mismatch 15, Raman spectroscopy 16, and cytological smears 14

have also been forthcoming.  In lieu of these methods that capitalize on electrical, optical, and 
biochemical phenomena, we have chosen to pursue an approach which is based on analyzing mechanical 
behavior of the skin.  Detecting changes in tissue by palpation and then associating them with a disease 
state has a long-standing history in clinical medicine, and utilizing changes in the mechanical properties 
to specifically characterize the skin does have precedent.  A thoughtful review by Edwards and Marks 
discusses the complex mechanical behavior of skin when subjected to in vitro and in vivo testing 17.  Their 
review highlights extensive methodologies being used to quantify skin properties (e.g. uni-axial and bi-
axial extensometry, torsion stimulators, indentometery, ballistometric tests, shear wave application 
devices, dynamic suction methods, ultrasonics, and electrodynamometry) and also emphasizes the 
difficulties in comparing across these methods.  One of the authors' conclusions is that the need for 
quantitative reproducible methods to assess skin health is necessary given the considerable subjectivity in 
clinical analysis.
 Following previous work in 18, we are developing a new method we have termed ‘modality-
independent elastography’ (MIE) that combines image processing with an inverse problem.  More 
specifically, image similarity metrics routinely used with image registration methods are recast to satisfy 
an inverse elasticity problem framework whereby mechanical properties within a biomechanical model of 
deforming tissue become the driving parameters for improved image similarity.  In this way, MIE 
circumvents two potential limitations of current elastographic techniques. First, it is not inherently 
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dependent on pre-processing steps such as homologous feature selection and tracking which drive active 
contour models 19-21 and other traditional displacement-based iterative methods22-24, although such 
techniques can aid in the determination of boundary conditions. Secondly, because it is an image 
processing methodology, MIE is not reliant on a particular imaging modality (such as in ultrasound and 
magnetic resonance elastography) as long as the acquired images provide sufficient pattern to allow for 
comparison.  Building upon recently with a multi-resolution implementation25, this paper presents 
analysis using a tissue model that incorporates geometric nonlinearities, the effects of the three-
dimensional nature of the problem which include varying subcutaneous layer thicknesses, and varying 
lesion depth.  In addition, a relatively crude preliminary in vivo result is also demonstrated.  

2. MATERIALS AND METHODS 

2.1.  Modality Independent Elastography 

 MIE begins with the acquisition of an image series consisting of an image acquired prior to and 
after an applied deformation.  The method is “independent” because it does not require any specific 
imaging modality but rather that sufficient pattern is present within the acquired images such that material 
properties can be assessed from pattern changes within the acquisition-pair.  This is a similar requirement 
for many methods of non-rigid image registration.  At its core MIE is an image analysis method whereby 
a model-generated deformation field is applied to the pre-deformed image series (source) and compared 
to its acquired deformed counterpart (target).  This comparison is nested within a Levenberg-Marquardt 
optimization routine such that the material properties become the parameters of interest in matching the 
model-deformed source image to the acquired target image.  The methods and development of this 
technique have been reported in detail elsewhere18, 25-29.
 With respect to the optimization framework for MIE, it can be represented as a least squared error 
objective function: 

2

Et ESESminE    (1) 

where tES  is the similarity value achieved when comparing the target image to itself (i.e. the maximum 

value for the similarity measure, so for the correlation coefficient 1tES ) and EES  is the similarity 
between the model-deformed source image and the acquired target image using the current estimate of the 
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elastic modulus.  Eq. (1) is optimized by setting the partial derivative equal to zero and solved using a 
Levenberg-Marquardt approach: 

Et
TT ESESJEI]J][J[  (2) 

where ]J[  is the M x N Jacobian matrix of the form 
E
ESJ E  and M is the number of similarity 

measurements (i.e. zones) being made and N is the number of material property regions.  Because 
]J][J[ T  (an approximation to the Hessian matrix) tends to be ill-conditioned, it is regularized with an 

empirically determined  parameter found in the standard Levenberg-Marquardt approach30.  The 
determination of this regularization parameter is described in 31.  The multi-resolution framework to MIE 
is shown in Fig. 1.  The methodology used involves a hierarchical material parameter resolution series.  
This has been reported elsewhere 25, 27 and has been shown to assist in avoiding local minima that are 
associated with the decorrelation of patterned data. 

2.2.  Model for Skin 

One critical component within all model-based inverse problem frameworks is the selection of 
the computer model to represent the continuum of interest.  In previous phantom, simulation, and in vivo 
studies, we have elected to employ a plane stress linear elastic model to simulate the skin.  This model is a 
two dimensional approximation of the three dimensional system which assumes a symmetric, isotropic, 
thin specimen in equilibrium, and stresses that are constrained to lie within the plane. These assumptions 
simplify Cauchy’s law from 36 stiffness constants to 2 and use the equation:  

0   (3) 
where  is the 2D Cartesian stress tensor and is defined below followed by the plane stress constitutive 
equations:
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where E is Young’s modulus, and is Poisson’s ratio.  For this work, we have determined that a Poisson’s 
ratio of 0.485 for our skin phantoms and tissue work has performed reasonably well.  This value would 
correlate with a ~32:1 ratio of the Lame  constants  with the shear modulus, and being the 
second Lame  constant) which is reasonably below the convention for Poisson locking (sometimes called 
mesh locking and typically has ) although one could argue that hyperelastic models may be the 
more appropriate model and will need to be explored in the future.  Using the Galerkin weighted residual 
method to integrate and solve this set of partial differential equations, a finite element framework is 
generated and can be solved to represent a displacement field for a given distribution of Young’s 
modulus.   
 In this paper, the plane stress model has been enhanced to incorporate the full Green-Lagrange 
strain tensor as defined by: 
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Use of this tensor description abandons the traditional small-strain approximation in favor of one 
compatible with large deformations.  The difference in solutions between small and large deformation 
theory can be seen in the 2D simulations shown in Fig. 2.  Fig. 2 compares the boundary shape of a 
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Hookean linear elastic membrane to a 2D Hookean geometrically nonlinear elastic model.  For these 
simulations, a plane stress approximation was performed for comparison only of the solution due to 
nonlinear terms (i.e. a ~30-40% compressive stress could never be applied to a thin specimen, the 
material would buckle well before).  The important aspect to notice is that more necking and less bulging 
occur in the nonlinear than the linear model in tension, and compression, respectively.  With respect to the 
difference in the linear model among Fig. 2a and 2b, 2b is the reverse of 2a (this is a characteristic of 
linear theory).  However, the lack of this symmetry for the nonlinear model is characteristic of the Green-
Lagrange strain tensor and is caused by the interplay between the linear and quadratic terms in the tensor.   
In this paper, the results from the linear and nonlinear model will be compared.   

2.3.  Nonlinear Model Experiments 
 In previous work, a phantom of 
simulated skin was generated from using a 
polyurethane membrane 25 cm long, 15 cm 
wide, and approximately 2 mm thick containing 
two types of materials.  The bulk material, representing “normal” skin, was chosen to be Evergreen 10 
(Smooth-On, Easton, PA), while the stiffer Evergreen 50 was used to create a 5 cm circular inclusion of 
full depth and was placed at the center of the phantom.  The visible surface of the phantom was modified 
by drawing a regular grid of horizontal and vertical lines spaced about 1 cm apart in either direction.  Fig. 
3 shows the skin phantom as acquired by an optical camera at the baseline, 1 cm, and 2cm stretch levels.  
Separate mechanical tests on the membrane were conducted using the EnduraTEC ELF 3200 material 
tester (EnduraTEC Systems Group, Bose Corporation, Minnetonka, MN) 25. Table 1 reports the expected 
Young’s Modulus contrast ratio based on a Hookean solid fitted to each respective stretch/strain level.  
The scale of lesion to field-of-view size is the anticipated aspect ratio for a dermoscopic system.  This 

a b c
Fig 3.  Phantom membrane stretches (a) baseline, (b) 1 cm stretch, (c) 2 cm stretch. 

Stretch CR (Linear) CR (Nonlinear) 
1 (0.5 cm) 5.7 5.0 
2 (1.0 cm) 5.0 4.8 
3 (1.5 cm) 4.6 4.7 
4 (2.0 cm) 4.2 4.4 

Table 1.  Expected elastic contrast ratio. 

a b
Fig. 2.  (a) Fixed ~30-40% tensile strain applied to original with linear and nonlinear model, (b) ~30-40% 
compressive strain. 

30



image data was used as an input to the MIE 
framework, and reconstructions comparing the 
linear and nonlinear model were generated. 

2.4.  Three-Dimensional Model Experiments 
 In an effort to test the MIE algorithm with 
more realistic images of the skin as would be 
expected in the clinic, a simulation study was 
performed on an image obtained from the 
Dermatology Image Atlas project 
(www.dermatlas.org, “melanoma_1_040510”, 
contributed by Eric Ehrsam, M.D., Fig. 4a).  
Dermoscopic images provide the challenge of 
relying on the natural pattern instead of the structured grid used in the membrane phantom experiments 
(although the skin could be printed upon with an ink grid).   Previous simulation work on this image can 
be found in 25.
 One possible critique of this dermoscopic framework is the fear that underlying layers would 
confound the approach.  As a result, we have modified the simulation study reported in 25 (e.g. Fig. 4b) to 
be more realistic.  Fig. 5a-5c shows the setup of the new simulation study.  In this study, six 10 cm x 10 
cm domains were constructed which had different layered structures.  Three domains were 6mm in total 
thickness (~4mm epidermis/dermis, 2mm subcutaneous) and had 1cm central inclusions varying in depth 
1mm, 2mm, and 3mm, respectively.  The remaining three domains were the same except that the 
subcutaneous layer thickness was increased to 7mm.  The selection of subcutaneous layer thickness 32, 33

and stiffness values34 were based on the literature.  Using this domain, a mechanical aperture that 
stretched the skin was simulated, 3D displacements were calculated (Fig. 5b), and then projected on to the 

original 2D mesh.  A new set of simulated images (deforming Fig. 4) was generated and then used as 
input to the 2D MIE algorithm.   
2.5  Noninvasive In Vivo Experiments 

 In addition to the simulation experiments, a second camera and deformation system was 
constructed using a Sony XCD-X710CR CCD camera with a Schneider 12 mm lens and a circular 

a b
Fig. 4.  (a) Melanoma lesion, with (b) sample 
reconstruction. 
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Fig. 5. (a) Mesh with refinement in lesion area, (b) simulated compression of skin by device, and (c) depth 
variation (transect T is shown in (a)). 
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polarizing filter for the optics mounted over a crude spring-loaded standard set of pincers that were 
pressed against the skin surface and bound with commercial adhesive.  Digital images (800 x 600 
resolution) of a common nevus of palpable stiffness that was 2-3 mm in diameter and located on the volar 
aspect of the left forearm of a male volunteer were acquired in both relaxed and stretched states.  It was 
determined that the reflection and scattering of ambient fluorescent lighting interfered with this particular 
setup and affected the input image quality, so an artificial grid was imposed to counteract specularity.  

Images were acquired in the baseline and 
stretched state and given to the MIE algorithm.

3. RESULTS
Fig. 6 illustrates the reconstructions of 

the phantom membrane system using the linear 
and nonlinear models, respectively.  Fig. 7 reports 
how the objective function varies between the 
linear and nonlinear model reconstructions of Fig. 
6.  Fig. 8 demonstrates the dependence of 
resolving stiffness (3:1, 6:1, 12:1) on depth (1, 2, 
3 mm) for the 18 combinations (combinations of 
3 depths, 3 contrast ratios, and 2 subcutaneous 
layer thicknesses).  Table 2 reports an 

approximate contrast ratio of the lesion-to-bulk material for each of the cases shown in Fig. 8.  Fig 9. 
illustrates the results from the in vivo experiment conducted.  Fig. 9 shows (a) the nevus , (b) the finite 
element grid, and (c,d) reconstructed elasticity images.  Fig. 9c-d illustrate the effect of incorporating  
increasing degrees of a priori knowledge of the actual location and elasticity distribution into the 
algorithm.  Fig. 9c is a general elasticity reconstruction of the nevus with lesion-related initial guess, and 
Fig. 9d maintains the spatial prior of Fig. 9c for the entire duration of the reconstruction process. 

4. DISCUSSION 

With respect to Fig. 6, the most important features to note are a very subtle improvement in 
satisfying the inclusion contour, and the decrease in variability of the contrast in the geometric nonlinear 
reconstructions.  This is consistent with the behavior in Table 1 and indicates that the geometric nonlinear 
reconstruction is performing as predicted.  One thing to note is that if the membrane were a true Hookean 

Fig 7. Objective function difference between linear and 
nonlinear models over all stretches and resolutions. 

Stretch 1 Stretch 2

Stretch 3 Stretch 4

Stretch 1 Stretch 2

Stretch 3 Stretch 4 a

Stretch 1 Stretch 2

Stretch 3 Stretch 4

Stretch 1 Stretch 2

Stretch 3 Stretch 4 b
Fig 6.  (a) Linear Hookean reconstructions for each stretch state, and (b) the geometrically nonlinear Hookean 
reconstructions.  Contour shows inclusion border.
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nonlinear solid, the CR would be the 
same across all stretches, i.e. strain 
levels.  While the variability across 
levels was reduced between the 
linear and nonlinear models for 
strain, the data supports a more 
complex constitutive model for this 
phantom system.  Fig. 7 also demonstrates some consistency with the extension to a nonlinear model.  
Here we see that at the largest stretch values, the difference between the two models is highest with the 
nonlinear model outperforming the linear. 

With respect to Fig. 8, and Table 2, despite not reaching the expected contrast ratio values, each result 
localized the lesion and demonstrated sensitivity to depth and contrast.  With respect to contrast ratio, this 

a b

c d

a b

c d
Fig. 9.  (a) Dermoscopic scale interrogation (magenta border is about 
3 mm in diameter), (b) reconstruction mesh, (c) general elasticity 
reconstruction, (d) incorporation of lesion border as a priori
information. 

2mm 
SQ

1 mm 2 mm 3 mm 

3:1 2.12 2.55 2.79 
6:1 3.08 3.76 4.00 
12:1 4.11 4.71 5.15 

7mm 
SQ

1 mm 2 mm 3 mm 

3:1 1.93 2.27 2.34 
6:1 2.87 3.49 3.55 
12:1 4.03 4.28 4.53 

Table 2.  Lesion-to-bulk contrast ratio at 
each lesion depth (1mm, 2mm, 3mm) 
and target contrast level (3:1, 6:1, 12:1) 
for 2mm (top) and 7mm (bottom) 
subcutaneous thicknesses. 

1 6

3:1

6:1

12:1

1 mm 2 mm 3 mm 1 mm 2 mm 3 mm

2 mm subcutaneous 7 mm subcutaneous

1 6

3:1

6:1

12:1

1 mm 2 mm 3 mm 1 mm 2 mm 3 mm1 mm 2 mm 3 mm

2 mm subcutaneous 7 mm subcutaneous

Fig. 8.  3-D effects on elasticity images with varying lesion depth and subcutaneous layer depth.  Ratio on left 
shows actual contrast while colorbar shows reconstructed.  Fig. 4 shows the lesion contour. 
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simulation was more challenging than previous work.  The results indicate that varying subcutaneous 
thicknesses has a very modest effect in confounding lesion reconstructions for the contrast regime shown.  
Fig. 8 does suggest that at some contrast levels there may be overlap (e.g. a 3mm, 3:1 lesion with 2mm 
subcutaneous layer may be confused with a 1mm, 6:1 lesion with 7mm subcutaneous layer).  This could 
be potentially confounding if left in the absence of other information.  However, Horejsi et al. and Moller 
et al. 32, 33 do provide guidance for estimating the subcutaneous tissue thickness in a general population.  
Additionally, they use a relatively inexpensive optical device to make these measurements.  There is little 
doubt that using this a priori information would reduce variability in interpretation.  It is interesting to 
speculate that if a particular lesion type was of a known stiffness a priori then perhaps the reconstruction 
contrast could be used to estimate lesion depth.  Looking across the grids of a particular property contrast, 
there is a definitive change in the reconstruction as a function of depth.   

Fig. 9 demonstrates a preliminary attempt of applying the framework to an in vivo system.  
Considering there was very little control over this system and no ground truth was available, these results 
qualitatively confirm the potential utility of MIE in evaluating an area of skin with a region of differing 
elasticity.  While the results in Fig. 9 c,d are not completely satisfying at this time, it should be 
emphasized that the camera-system employed a coarse resolution, and the skin-to-device coupling system 
was extremely crude.  Given this somewhat ad-hoc experiment, the detection of any anomaly in the 
correct region is encouraging for this approach.  It was also interesting to note the increase in performance 
by adding the lesion extents to the information provided to the algorithm. 

5. CONCLUSIONS 

 The results from the experiments above demonstrate an ability to use the MIE framework within 
the dermoscopy setting.  Methodological concerns regarding the use of geometric nonlinear models, 
three-dimensional effects, and in vivo conditions are addressed.  The results indicate that while geometric 
nonlinearities do modestly affect reconstructions, nonlinear material models may be needed to correct for 
remaining discrepancies.  A modest improvement was shown using the geometric nonlinear model 
especially at large strain values which is consistent with the theoretical development.  The three-
dimensional effects of lesion depth and varying subcutaneous layer thicknesses are assessed.  Lesion 
depth does affect contrast ratio whereas subcutaneous layers affect the reconstructions to a significantly 
lesser degree.  Avenues to detect lesion depth in the presence of a prior knowledge of a lesion’s stiffness 
may have surgical implications.  Preliminary in vivo work suggests that lesion characterization is possible 
although specificity and sensitivity of the method await further study and will need a considerably more 
robust acquisition system. 
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for use in dermoscopy
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Skin Cancer & Significance

Typical Discerned Facts for Skin Cancer:
3 types – basal cell carcinoma (BCC), squamous cell 
carcinoma (SCC), and melanoma
1,000,000+ new cases are diagnosed each year
800,000+ BCCs, 200,000+ SCCs, 60,000+ melanomas
Annually, melanoma ranks 6th highest among newly 
diagnosed cancers
Melanoma is most lethal
Skin lesion scoring for monitoring (ABCDE, etc.)
Diagnosis is performed by biopsy
Skin cancer is rarely fatal and is largely treatable

If so, why pursue this?

Skin Cancer & Significance

Less Discerned Facts for Skin Cancer:
1,000,000+ newly diagnosed skin cancers involve an 
estimated 5-7 million biopsies
Management of NMSC is considerable

Housman et al., Journal of the American Academy of Dermatology, 
vol. 48, pp. 425-429, Mar 2003.

Skin Cancer & Significance

Green et al., Dermatologic Surgery, vol. 30, pp. 1208-
1209, Sep 2004.

22 Dermatologists participated to determine how 
many biopsies taken were cancerous
“Malignancy ratio” (# of malignant biopsies to total 
biopsies performed)
Findings:  

40% mean malignancy ratio (ratios varied greatly 13-85%)
Age correlated with better malignancy ratio’s (2% increase 
with year of experience)

Annual biopsy costs are in the $100’s of millions

Motivation

Total direct cancer costs are approximately 78.2 billion 
per year

If a low-cost dermoscopic probe, with elastographic
imaging capabilities was to have high sensitivity and 
specificity for skin cancers, this would translate to a 
significant reduction in health care expenditure.

While skin cancer may lack significance in 
lethality, it is quite significant with respect to 
healthcare costs.

Elasticity Imaging Approach
Computational Modeling

Patient-specific finite element models
Physics-based simulations and image deformation

Image Similarity
Metrics of image comparison

Non-linear Optimization
Cornerstone in model-based image reconstruction 
methods
Inverse problem

A Modality Independent A Modality Independent ElastographyElastography (MIE)(MIE)
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Source Image

MIE Method for Dermoscopic Data Sets

Target Image
Apply Excitation

FEM ModelModel-Deformed 
Image (MDI)

FEM MeshK-Means Clustering
of Properties

Compare Target & MDI
with similarity metric 
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Update Property Distribution

Paper Purpose

Investigate the use of a geometric 
nonlinear model for inversion

Investigate the effects of 3D nature of 
skin (both lesion and subcutaneous 
layers)

Present a very preliminary in vivo result
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Paper Purpose

Investigate the use of a geometric 
nonlinear model for inversion
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skin (both lesion and subcutaneous 
layers)
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Other Membrane Experiments Conclusions

Geometric nonlinear effects are mild
Boundary conditions are likely to be the most 
important aspect
5-10% improvement in objective function value
Qualitative improvement in lesion border

Material nonlinearities are next step
Subcutaneous layers have little effect
Depth differentiation with contrast

Overlap in contrast may be problem
In vivo results indicate a nevus lesion has 
increased stiffness

Future Work
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40



 

 

An Evaluation of 3D Modality Independent Elastography Robustness 
to Boundary Condition Noise 

 
Jao J. Ou*, Rowena E. Ong, Michael I. Miga* 

{jao.ou,rowena.ong,michael.i.miga}@vanderbilt.edu 
Vanderbilt University, Department of Biomedical Engineering, Nashville, TN 37235            

ABSTRACT 

This work explores an inverse problem technique of extracting soft tissue elasticity information via nonrigid model-
based image registration. The algorithm uses the elastic properties of the tissue in a biomechanical model to achieve 
maximal similarity between image data acquired under different states of loading. A framework capable of handling 
fully three-dimensional models and image data has been recently developed utilizing parallel computing and iterative 
sparse matrix solvers. For this preliminary investigation, a series of simulation experiments with clinical image data of 
human breast are used to test the robustness of the algorithm to expected mis-estimation of displacement boundary 
conditions encountered in real-world situations. Three methods of automated point correspondence are also examined as 
means of generating boundary conditions for the algorithm. 

Keywords: elastography, computational modeling, inverse problem, non-rigid registration 
 

1. INTRODUCTION 
The characterization of the mechanical properties of tissue is an important potential source of information for detection 
and diagnosis of disease processes. For example, there is a long-standing clinical appreciation of evaluating tissue 
elasticity through palpation in the physical examination and correlating differences in stiffness with possible 
pathological states.  A minimally invasive methodology for analyzing tissue deformation through imaging and/or image 
processing techniques is a central goal of the field of elastography [1,11].  Application of such methods to the 
interrogation of the breast [2,3], skin [4-6], prostate [7], and other accessible organ systems is an active area of research.   

Many of the current elastography methods are founded in ultrasound (US) and magnetic resonance (MR) imaging and 
involve the estimation of induced displacements within the tissue of interest to infer the elasticity distribution.  We have 
recast the problem as a physically-constrained non-rigid image registration utilizing quasi-static deformation and image 
similarity metrics that reconstruct the spatial distribution of elasticity parameters.  This technique has been termed 
'modality-independent elastography’ (MIE) [8-10] because of its ability to handle native anatomical images from 
different sources with relatively simple modifications to the acquisition procedure.  To date, data from MR, X-ray 
computed tomography (CT), and digital photography have been used to drive the algorithm. In addition to the necessary 
preparation and effort involved in gathering images, the other major input to this reconstruction method is the 
delineation of boundary conditions on the region of interest.  Because this process currently involves varying levels of 
manual interaction, there is a need to develop a protocol that is both effective and mostly automated for determining 
point correspondences. The objectives of this work are to test the effects of degradation in input data quality on the end 
reconstruction and examine candidate methods for generation of displacement boundary conditions. This is done in the 
context of evaluating the robustness of a newly realized three-dimensional version of MIE by performing simulation 
experiments with randomized noise processes and comparing the fidelity of reconstructions resulting from boundary 
conditions generated by three different techniques of determining surface point correspondence.  

2. METHODS 
2.1 Elastographic reconstruction framework 

The conceptual framework for our elastographic reconstruction has been previously described in [6,8-10]. In brief, an 
image of a tissue of interest (source) is deformed by a biomechanical computer model and compared against an acquired 
image of the same tissue in a mechanically loaded state (target). Iterative updates of elasticity parameters to the model 
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are performed until a suitable match in intramodal image similarity is achieved in a least squares manner to satisfy a 
non-linear optimization scheme. This process can be classified as an inverse problem, with model-based deformation of 
the source image representing the forward problem. The three major components of the algorithm are the model, image 
comparison, and optimization, each of which is described in more detail below. 

The partial differential equation that expresses a state of mechanical equilibrium can be written as [12]: 

0=⋅∇ σ  (1) 

   
where σ is the Cartesian stress tensor.  We have elected to model the constitutive tissue behavior using Hooke’s Law of 
linear elasticity, which states that the strain is proportional to the applied stress, and assume that materials are isotropic 
and incompressible in nature.  This leads to the formulation of Cauchy’s Law as 

 (2) 

 

which describes the constitutive relationship between stress and strain in terms of the elasticity parameters E (Young’s 

modulus) and ν (Poisson’s ratio).  The shear modulus G is defined as
)1(2 ν+

E . 

A finite element (FE) representation of the model is constructed from the source image and assigned appropriate 
boundary conditions based on estimated displacement or stress.  The standard Galerkin method of weighted residuals 
[13] is used to construct and solve the system, which yields a set of displacements that are used to deform the source 
image. This model-deformed image is then compared to the target using an intensity-based image similarity calculated 
for a series of voxel groupings determined by a downsampling of the image set overlap.  The correlation coefficient 
(CC) [14] is the method of choice, as it has empirically demonstrated superior performance over other metrics such as 
the sum of squared differences and normalized mutual information. 

The elasticity parameter optimization can be written as the minimization of the least squares error objective function  

2
ESTTRUE SS −=Ψ  (3) 

where STRUE is the set of similarity values achieved when comparing the target image to itself, SEST is the similarity 
between the model-deformed source and the target images using current estimates of the elastic modulus distribution, 
and |•| denotes the vector L2 norm. Note that by definition, STRUE for CC has a constant value of 1. Using a Levenberg-
Marquardt approach, the residual form of equation (3) becomes   

 

[ ]{ } [ ]{ }ESTTRUE
TT SSJEIJJ −=∆+ α  (4) 
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where J = ∂SEST/∂E is the Jacobian matrix and the regularization parameter α is determined using the methods described 
in [15].  Modulus values are updated by ∆E until an error tolerance is reached or a maximum number of iterations have 
been completed. Spatial averaging of elasticity values in the model and solution relaxation between iterations are also 
utilized to improve the stability of the optimization.  

It should be noted that the size of the Jacobian matrix is dependent on the number of material properties to be 
reconstructed, with each column requiring a forward solve of the FE model. For the general lesion detection problem, a 
fine discretization of the mesh requires many solutions such that the building of this matrix consumes a considerable 
portion of computational resources.  This fact is exacerbated with the use of three-dimensional data and necessitates a 
parallelized system.  Recent work using the Portable Extensible Toolkit for Scientific Computation (PETSc) toolkit 
[16,17] has provided the necessary coding base for interfacing sparse matrix system solvers with a C/C++ optimization 
framework in order to supersede the original MATLAB/FORTRAN framework. This new version is designed to scale 
readily between the complexity of the model and the number of processors available; it has been tested on a 
homogeneous cluster of ten processors, with further active development taking place in conjunction with the Vanderbilt 
ACCRE project, which houses hundreds of CPUs.   

2.2 Simulation experiment setup 

A CT volume of a human breast, obtained from UC-Davis Dept. of Radiology, was used as the source image (256 x 256 
x 130, 0.6mm x 0.6mm x 0.6mm voxel spacing) for the remainder of this work. The surface of the breast was segmented 
(ANALYZE 6.0, Mayo Clinc, Rochester, MN) to create a three-dimensional mesh composed of 39,013 nodes connected 
as 214,163 tetrahedral elements. In order to ensure initial data fidelity for reconstruction experiments, an idealized target 
image volume and gold standard boundary condition set were created.  A 2-cm spherical tumor was implanted in the 
center of the mesh by assigning a stiff modulus value to the member elements that was six times higher than the 
surrounding material [18]. Tissue deformation from the inflation of a rectangular air bladder against the lateral surface of 
the breast was numerically simulated to qualitatively match observed mechanically loading of an existing device on a 
breast-mimicking phantom of polyvinyl alcohol cryogel. The stress distribution over a rectangular contact area was 
modeled as the cross-section of a Gaussian pressure field with its maximum value located at the center of the bladder; 
the base of the breast was fixed in place as if pinned to the chest wall.  The deformation field throughout the domain was 
calculated using a direct forward solve of the finite element model and then applied to the intensity field of the source 
image to create a target volume.  Displacements at the surface nodes were used to make a final description comprised of 
all Type I (Dirichlet) boundary conditions.  Figure 1 below illustrates the setup of the data used.  

All reconstructions were performed using a priori knowledge of the location and size of the inclusion in order to limit 
the scope of the problem (e.g. the expense of the Jacobian matrix) to a two-material discrimination of relative stiffness 
(elastic contrast). Having a defined physical model and synthetic image comparison also allows for examination of the 
optimization behavior separately from the other MIE components in order to best evaluate the effect of input 
inaccuracies on the final elasticity distribution. The reconstruction algorithm begins by assigning a homogeneous 
elasticity distribution, with Poisson’s ratio held constant at ν = 0.485 to represent a nearly incompressible material.  For 
this data set, 733 similarity zones were discretized from the target image volume. 

 

 
Figure 1.  Surface renderings of CT breast volume used in MIE simulation experiments. From left to right: source image, 

finite element mesh, and target image with deformation created by presumed inflation of an air bladder.  
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2.3 Testing robustness of the algorithm 

The current method of selecting boundary conditions as derived from experiences in 2D work requires manual 
interaction to guide or correct point correspondence for every surface node. Assuming that visible markers are available 
in an image, but that an input device (e.g. a mouse) is needed to identify the specific coordinates, this introduces an 
operator-dependent noise process in localizing any given point. The cumulative effect of these inaccuracies is 
propagated from the model to the image deformation and then the similarity measurements. For a given reconstruction 
experiment, the gold standard boundary condition set was systematically disrupted by adding a Gaussian randomized 
vector of a particular length (0.1, 0.2, 0.5, 1.0 or 2.0 voxel units). Figure 2 shows an example of the distortion caused by 
the applied noise.  

 
Figure 2.  Example of distortion due to additive randomized error. The gold standard boundary conditions used to generate 

a controlled deformation produce the mesh shown on the left. For effect, the 2.0 voxel unit noise is show on the right.  

 

2.4 Testing automated boundary condition generating methods 

For this work, three methods of surface registration and point correspondence were considered for a more automated 
method of determining boundary conditions for the reconstruction algorithm. Two are derived from surface matching of 
potential energy distributions, and the other is a free-form warping.  

If the flow of a substance over undeformed and deformed breast surfaces is taken to be a conserved process, then 
correspondence can be achieved by matching the same energy deposition between the source and target, that is, the 
equivalent level sets. In a physical sense, Laplace’s equation can be used to describe this type of movement analogously 
to steady-state heat distribution: 

 02 =Φ∇  (5) 
 

where Φ would represent the temperature over a given region.  Similarly, the diffusion equation describes the change in 
concentration or density of a material over time on a region: 

 Φ∇=
∂
Φ∂ 2α
t

 (6) 

 

where α is the diffusivity constant.  

These partial differential equations were used to calculate an energy distribution from the nipple area to the chest wall 
over the surface of a breast.  Isocontours of particular energy values were then extracted from each surface to form a set 
of connected points.  The symmetric closest point method described by [19] was used to determine a displacement field 
from which point correspondence at boundary nodes could be interpolated.  
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The third method involves thin-plate spline interpolation [20] to determine point correspondence. This was done to 
consider a widely-used method of non-rigid transform that can take advantage of fiducial information that should be 
present in future real-world data acquisition. The use of physical markers to track breast surface displacement during a 
deformation also defines a set of control points would allow the displacement boundary conditions for MIE to be simply 
interpolated from the local warping.  In these simulation experiments, 40 surface nodes of known correspondence in 
each of the image volumes (due to the controlled deformation) served as fiducials.   

2.5 Evaluation of reconstructions 

Evaluation of the reconstruction results is performed by calculating the ratio of the elasticity of the inclusion to the rest 
of the breast for the distribution that yields the minimal objective function value over the course of optimization. The 
robustness of the MIE algorithm was tested with four trials at each of the magnitudes of randomized vectors (described 
above in Section 2.3), and the reconstruction results were averaged to determine a trend and possible threshold of noise 
tolerance for the algorithm. 

For the automated boundary condition generation methods, a forward mapping of the objective function space was 
calculated to determine a theoretical optimum to the reconstruction.  This was done by calculating the similarity values 
for model-based image deformations created by adjusting the elasticity contrast of the inclusion over a range of 0.5:1 to 
30:1. An interpolating curve was fit and the minimum objective function value and associated elasticity contrast were 
extracted.   

 

3. RESULTS 
 

3.1 Robustness of algorithm to boundary condition noise 

The following tables summarize the effects of additive noise of a particular magnitude to the gold standard boundary 
condition set.  As the magnitude of the applied randomized vectors increased, a dramatic increase in the minimum 
objective function value is observed. Additionally, changes in the reconstructed elasticity contrast indicate that a cutoff 
exists in the ability of the algorithm to achieve a successful result (recall that the known correct ratio is 6:1) for 
disruption by vectors of length 0.5 voxel units or higher.  

 

Table 1.  Effect of applied random boundary condition noise on objective function space and reconstructed elasticity 
contrast ratio. 

Randomized 
vector magnitude 

(voxel units) 

Mean optimal 
objective function 

value 

Mean optimal 
elasticity contrast 

value 

0.1 2.85 ± 0.0382 5.62 ± 0.421 

0.2 10.1 ± 0.367 5.70 ± 0.588 

0.5 60.1 ± 4.19 2.36 ± 0.393 

1.0 80.2 ± 0.561 2.47 ± 0.266 

2.0 104 ± 3.42 2.17 ± 0.422 
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3.2 Use of automated point correspondence  

Figure 3 depicts the deformation fields found by the various automated methods which were converted into a boundary 
condition sets and run through the reconstruction algorithm. Qualitatively, the displacements found by the diffusion 
method are quite different from the gold standard set, while the results from the solution of Laplace’s equation and the 
thin-plate spline interpolation appear to be more satisfactory. The mean target registration error of the three methods 
confirms this with the spline having the best performance (0.26 mm), the Laplace method next (1.0 mm), and the 
diffusion method being the worst (2.0 mm).  Inspection of Figure 4 further demonstrates that the imposition of an inexact 
boundary condition set on the model has a distinct effect on the optimization by shifting the minimum value to a 
different position. A comparison of the fit with the reconstruction in both objective function value and elasticity contrast 
is provided in Table 3 below and indicates that the algorithm is mostly in agreement with the predicted values for the 
Laplace and thin-plate spline methods but not as well for the diffusion method. 

 

 

 
 

Figure 3.   Three candidate automated methods for MIE boundary condition generation. Top row, from left to right: surface 
deformations calculated from diffusion energy matching, Laplace solution energy, and thin-plate spline interpolation.  
Bottom row: target registration error (TRE) distribution for each method when compared against the gold standard of 
known correspondence. The diffusion-based mesh is both qualitatively and quantitatively the worst performer. The 
Laplace solution appears to capture the shape of the bladder indentation more precisely, but the thin-plate spline has the 
best overall accuracy in determining point correspondence.  
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Figure 4.  Mappings of objective function value vs. elasticity contrast ratio (tumor:breast) as affected by the boundary 

condition sets generated by different automated methods of surface point correspondence. The minimum value of each 
curve corresponds to the optimal elasticity contrast that can be achieved by the algorithm when constrained by the 
inaccuracies of the methods: (a) diffusion, (b) Laplace, and (c) thin-plate spline interpolations. 

 

 

 

Table 3.   Comparison of automated point correspondence methods on MIE reconstruction quality. Predicted values are 
found from the minimum point of the curves shown in Figure 4. 

Method Predicted minimum 
objective function 

value 

Reconstructed 
minimum objective 

function value 

Predicted 
optimal elasticity 

contrast 

Reconstructed 
optimal elasticity 

contrast 

Diffusion 58.5 58.8 30.0 12.6 

Laplace 5.59 5.59 9.55 10.3 

Thin-plate spline 12.3 12.3 5.55 5.66 
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4. DISCUSSION 
The results of the boundary condition noise experiment are interesting because they indicate that improper localization 
of boundary points greater than or equal to 0.5 units of voxel spacing can introduce significant error to the reconstruction 
process and impair its ability to characterize the underlying elasticity distribution. This is a similar result to prior work 
done in two-dimensional systems in which successful reconstructions correlated to boundary condition selection error 
limited to half a pixel length [21]. It also confirms that randomizing the vectors is a significant challenge to the algorithm 
because it introduces highly non-physical deformations that cause backlash in the finite element mesh and other 
numerical anomalies.  

The implausibility of performing manual selection on all 6,319 boundary nodes underscores the importance of finding an 
automated method for determining point correspondences, especially at less than 0.5 voxel units of error.  In these 
simulation experiments, energy matching from the solutions of the diffusion and Laplace equations yield boundary 
condition sets that are inadequate for reconstructing a proper elasticity contrast.  This can be partly explained because the 
mean errors of those surface registration techniques (as compared to the gold standard) are approximately 3.3 and 1.7 
voxel units, respectively, which based on the randomized trials were magnitudes too large for the algorithm to handle. 
The diffusion-based boundary conditions also proved more difficult to obtain a stable solution for in the model, which 
probably contributed to the mismatch in reconstructed elasticity contrast. However, the results obtained from 
reconstructions using the thin-plate spline method are encouraging because the mean error was 0.43 voxel units.  The 
reconstruction behavior in that case was consistent with the predicted objective function space and the optimal elasticity 
contrast was found to be within 6% of the true value. This preliminary result appears to identify the use of thin-plate 
spline interpolation as a strong candidate for generating boundary conditions for MIE. The use of 40 control points is 
also seen as a reasonable choice for data acquisition and processing in order to capture the extent of expected 
deformation processes.  

 

5. CONCLUSIONS 
In this work, we have demonstrated the effects of inaccuracies in boundary condition determination on an elastography 
method that maximizes the similarity between images of a tissue of interest acquired under two different states of 
mechanical loading.  In order to characterize the robustness of the current version of this method, which has been 
updated to handle three-dimensional data in a parallelized scheme, randomized vectors were applied to distort a gold 
standard boundary condition set.  The results were used to determine a threshold of accuracy needed in order to still 
achieve an accurate reconstruction. In order to streamline the pre-processing involved in the algorithm, three methods of 
automated point correspondence were evaluated.  The success of these methods correlated with their mean error (relative 
to the true displacements) meeting the putative cutoff, and initial results indicate that established techniques such as thin-
plate splines hold promise for generating boundary conditions. 
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BACKGROUND

Figure 3.  Three candidate automated methods for MIE boundary condition generation. Top row, from left to right: surface deformations 
calculated from diffusion energy matching, Laplace solution energy, and thin-plate spline interpolation.  Middle row: target registration error 
(TRE) distribution for each method when compared against the gold standard of known correspondence. Bottom row: mappings of objective 
function value vs. elasticity contrast ratio (tumor:breast) as affected by the boundary condition sets generated from each each method. The 
minimum value of each curve corresponds to the optimal elasticity contrast that can be achieved by the algorithm when constrained by the 
inaccuracies of the methods. The diffusion-based mesh is both qualitatively and quantitatively the worst performer. The Laplace solution 
appears to capture the shape of the bladder indentation more precisely, but the thin-plate spline has the best overall accuracy in determining 
point correspondence.

This work explores an inverse problem technique of extracting soft tissue elasticity information via nonrigid model-based 
image registration. The algorithm uses the elastic properties of the tissue in a biomechanical model to achieve maximal 
similarity between image data acquired under different states of loading. A framework capable of handling fully three-
dimensional models and image data has been recently developed utilizing parallel computing and iterative sparse matrix 
solvers. For this preliminary investigation, a series of simulation experiments with clinical image data of human breast are 
used to test the robustness of the algorithm to expected mis-estimation of displacement boundary conditions encountered in 
real-world situations. Three methods of automated point correspondence are also examined as means of generating 
boundary conditions for the algorithm.

METHODS

RESULTS

DISCUSSION

The results of the boundary condition noise experiment indicate that improper localization of boundary points greater than or 
equal to 0.5 units of voxel spacing can introduce significant error to the reconstruction process and impair its ability to 
characterize the underlying elasticity distribution. This is a similar result to prior work done in two-dimensional systems in 
which successful reconstructions correlated to boundary condition selection error limited to half a pixel length [2]. It also 
confirms that randomizing the vectors is a significant challenge to the algorithm because it introduces highly non-physical 
deformations that cause backlash in the finite element mesh and other numerical anomalies. 

Simulation experiments utilizing automated surface registration and point correspondence methods may then be evaluated 
in the context of this new criterion. Energy matching from the solutions of the diffusion and Laplace equations yield 
boundary condition sets that are inadequate for reconstructing a proper elasticity contrast.  This can be partly explained 
because the mean errors of those surface registration techniques (as compared to the gold standard and in an equivalent 
sense to the tested noise levels) are approximately 3.3 and 1.7 voxel units, respectively, and are far too large for the 
algorithm to handle. The diffusion-based boundary conditions also proved more difficult to obtain a stable solution for in the 
model, which probably further contributed to the mismatch in reconstructed elasticity contrast. However, the results obtained 
using the thin-plate spline method are encouraging because the mean error was 0.43 voxel units, thereby satisfying the 
threshold while demonstrating reconstruction success.  The reconstruction behavior in that case was consistent with the 
predicted objective function space and the optimal elasticity contrast was found to be within 6% of the true value. This 
preliminary result appears to identify the use of thin-plate spline interpolation as a strong candidate for generating boundary 
conditions for MIE. The implementation for that method required the use of 40 control points, which is seen as a reasonable 
choice in placing fiducials for data acquisition in order to capture the extent of anticipated deformation processes. 
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Figure 2.  Top row: Surface rendering of source CT breast volume (left) and finite element mesh constructed (right). Bottom row: Target image 
created by simulated inflation of an air bladder (left) and example of randomized distortion of the true boundary conditions.

Method Predicted minimum 
objective function 

value

Reconstructed 
minimum objective 

function value

Predicted 
optimal elasticity 

contrast

Reconstructed 
optimal elasticity 

contrast
Diffusion 58.5 58.8 30.0 12.6
Laplace 5.59 5.59 9.55 10.3

Thin-plate 
spline

12.3 12.3 5.55 5.66
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Mean optimal 
objective 

function value

Mean optimal 
elasticity 

contrast value

0.1 2.85 ± 0.0382 5.62 ± 0.421

0.2 10.1 ± 0.367 5.70 ± 0.588

0.5 60.1 ± 4.19 2.36 ± 0.393

1.0 80.2 ± 0.561 2.47 ± 0.266

2.0 104 ± 3.42 2.17 ± 0.422

Table 2.  Comparison of automated point correspondence methods on MIE reconstruction quality.  Predicted values are found from the 
minimum point of the curves shown in Figure 3. The ideal (true) elasticity contrast is 6:1.

Figure 1.  MIE reconstruction algorithm flowchart.  After acquisition, source and target images (A) are discretized into regions and zones, 
respectively. The reconstruction process involves the use of iteratively updated elastic modulus values (B, E) to drive a finite element model-
based image deformation (C) until the best match is found (D).

The conceptual framework for the elastographic reconstruction involves three major components: a biomechanical model of 
the tissue, image deformation and comparison, and numerical optimization of image similarity. An image of a tissue of 
interest (source) is deformed by a prescribed computational model and compared against an acquired image of the same 
tissue in a mechanically loaded state (target). The deformation and comparison is repeated using systematic updates of 
elasticity parameters until a suitable match in image similarity is achieved to satisfy a non-linear least squares objective 
function [1]. Because the goal is to determine a spatial mapping of tissue elasticity, this process can be classified as an 
inverse problem, with model-based deformation of the source image representing the forward problem. For the current 
version of MIE, linear elasticity is used as the biomechanical model, the correlation coefficient as the image similarity 
metric, and a regularized Levenburg-Marquardt algorithm as the optimization method. The constitutive stress-strain 
relationship of the model is solved using finite elements with the Galerkin method of weighted residuals, and Dirichlet 
boundary conditions are selected from corresponding points in the image pair.

A CT volume of a human breast (obtained from the UC-Davis Dept. of Radiology) was used as the source image for this 
work. The surface of the breast was segmented to create a mesh composed of 39,013 nodes connected as 214,163 
tetrahedral elements. An idealized target image volume and gold standard boundary condition set were created by 
implanting a 2-cm spherical tumor in the center of the mesh and assigning a stiff modulus value to its member elements that 
was six times higher than the surrounding material. Tissue deformation from the inflation of a rectangular air bladder against 
the lateral surface of the breast was numerically simulated to qualitatively match observed mechanically loading behavior of 
an existing device.

The current method of selecting displacement (Type 1) boundary conditions requires manual interaction to guide or correct 
point correspondence for every surface node. Assuming that an input device (e.g. a mouse) is needed to identify the specific 
coordinates, this introduces an operator-dependent noise process in localizing any given point. The cumulative effect of 
these inaccuracies is propagated from the model to the image deformation and then the similarity measurements. For a 
given reconstruction experiment, the gold standard boundary condition set was systematically disrupted by adding a 
Gaussian randomized vector of a particular length (0.1, 0.2, 0.5, 1.0 or 2.0 voxel units). Figure 2 shows an example of the 
distortion caused by the applied noise, and Table 1 summarizes their effects on reconstructions performed with a priori
knowledge of the inclusion location. 

The implausibility of performing manual selection on all 6,319 surface nodes underscores the importance of developing an 
automated method for determining boundary conditions. Three methods of surface registration and point correspondence 
were considered; two are derived from surface matching of potential energy distributions based on the diffusion and Laplace 
equations, and the other is a free-form warping via a thin-plate spline. 

Table 1.  Effect of applied random boundary condition noise on objective 
function space and reconstructed elasticity contrast ratio (ideal 6:1).
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ABSTRACT 

Recent advances in breast cancer imaging have generated new ways to characterize the disease.  Many analysis 
techniques require a method for determining correspondence between a pendant breast surface before and after a 
deformation.  In this paper, an automated point correspondence method that uses the surface Laplacian or the diffusion 
equation coupled to an isocontour matching and interpolation scheme are presented.  This method is compared to a TPS 
interpolation of surface displacements tracked by fiducial markers.  The correspondence methods are tested on two 
realistic finite element simulations of a breast deformation and on a breast phantom.  The Laplace correspondence 
method resulted in a mean TRE ranging from 1.0 to 7.7 mm for deformations ranging from 13 to 33 mm, outperforming 
the diffusion method.  The TPS method, in part because it utilizes fiducial information, performed better than the 
Laplace method, with mean TRE ranging from 0.3 to 1.9 mm for the same range of deformations.  The Laplace and TPS 
methods have the potential to be used by analyses requiring point correspondence between deforming surfaces. 

Keywords: Registration, non-rigid, breast, deformation, correspondence, surface Laplacian, diffusion, finite element, 
thin-plate spline, interpolation 

1. INTRODUCTION
As breast cancer is estimated to kill over 40,000 women and be diagnosed in more than 178,000 in 2007 [1], the 
detection and treatment of breast cancer is an important area of scientific research.  Many novel techniques to aid in 
tumor detection are being developed that exploit the difference in physical properties between healthy and cancerous 
tissue.  Some of these techniques measure the optical, electrical, or elastic properties of tissue, including near-infrared 
tomography [6], electrical impendence tomography (EIT) [7],  ultrasound elastography (USE) [8], magnetic resonance 
elastography (MRE) [9], and in particular, modality-independent elastography (MIE) [2,3].   

MIE is a reconstruction algorithm for elasticity imaging that can be used for detecting breast tumors.  It involves 
imaging a pendent breast before and after a compression and using these images to reconstruct the elastic properties of 
the tissue using a nonlinear optimization framework, computer models of soft-tissue deformation, and standard measures 
of image similarity.  Unique to MIE is its ability to utilize images from any modality such as MRI or CT, as well as its 
usage of image similarity measures that make direct displacement measurements unnecessary. 

One requirement of MIE is an automated method of finding point correspondence between the pendent breast surfaces 
before and after compression, needed to specify the boundary conditions for the elasticity model.  As the breast is 
composed of soft tissue that deforms non-rigidly, standard rigid registration methods cannot be applied.  Previous work 
in non-rigid registration includes using splines and FEM models [11], as well as point-based methods such as the 
symmetric closest point (SCP) algorithm [10].   

In this paper, two automated methods that use the Laplace and diffusion equations to establish point correspondence 
between deformed breast surfaces were developed and compared to a standard thin-plate spline (TPS) interpolation 
method [4].   

*michael.i.miga@vanderbilt.edu 
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2. METHODOLOGY
2.1 Laplace and diffusion methods of finding point correspondence 

A major investigative task of this work was to evaluate whether the energy distributions modeled by a partial differential 
equation (PDE) over an undeformed (source) surface and a deformed (target) surface can be used to find the 
correspondence between the two surfaces.  In this method, the Laplace and diffusion equations were independently 
solved over the source and target meshes using the finite element method (FEM).  Laplace’s equation is most commonly 
used to describe potential flow problems such as in thermal, fluid, and electrostatic systems and is given by 

 (1) 

where  represents the potential and  describes the spatially varying conductivity.  The diffusion equation which 
allows a time-varying potential is given by 

 (2) 

where  represents the potential and  is the diffusion coefficient.  Let source refer to the solution to the Laplace or 
diffusion equation over the source surface, and let target refer to the solution over the target. The basic premise is that 
the potential field distributed over the source and target surfaces as calculated by the Laplace or diffusion equation will 
provide information about the correspondence between the source and target surfaces.  

To solve the equations, Dirichlet boundary conditions were set to simulate potential flow from the nipple area to the 
chest wall over the surface of a pendent breast (specifically, nodes in the nipple and chestwall area were given boundary 
values of 1 and 0, respectively).  To solve equation 1, a Galerkin finite element method is used whereby the equations 
are expressed along the surface orientation ( =1).   To solve equation 2, a similar scheme was used for handling the 
spatial component of the PDE and a fully implicit backwards Euler scheme was used for time-stepping.  In the case of 
equation 2, a no-flux condition was prescribed at the chest wall, and the potential field was allowed to propagate from 
the nipple ( =1).  In this calculation, time-stepping was stopped once the potential field reached the chest wall. 

After the Laplace or diffusion equation was solved over the source and target surfaces, the solutions were used to 
establish correspondence between the source and target nodes.   This involved two distinct processes: finding 
correspondence between isocontours of source and target and then “interpolating” that correspondence back to every 
source node on the mesh.  In the first step, isocontours were extracted from  source and target for a set of selected 
isovalues.  The correspondence between the source and target isocontours was determined by aligning the contours by 
their centroids and using the SCP algorithm.  In the second step, the displacement vectors at the source isocontours were 
interpolated to all source nodes using a thin-plate spline.  The final correspondence was found by adding these 
displacements to the source nodes to get the location of the corresponding point on the target surface. 

The method can be summarized in the following steps: 
1. Obtain the undeformed source mesh and deformed target mesh that define a breast surface before and after 

deformation. 
2. Assign boundary conditions at nipple and/or chest wall nodes. 
3. Solve PDE (diffusion or Laplace) over the source and target meshes using FEM. 
4. Extract isocontours on the source and target surfaces. 
5. Determine point correspondence between source and target isocontours using SCP. 
6. Interpolate displacements at source isocontours to all source nodes. 

2.2 Using thin-plate spline interpolation to find point correspondence 

One advantage of the PDE-based correspondence methods is that they do not explicitly rely on external markers to 
constrain the matching process.  However, when real-world data is acquired, fiducials are anticipated to be available.  
Therefore, TPS interpolation is another method that can be used to find point correspondence [4].  Although there are 
many different methods for interpolation, including polynomial splines and B-splines [11], TPS interpolation was chosen 
in part because it does not require a regular grid, the effects of changing a control point are localized, and it is a standard
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method that has been successfully used in many non-rigid registration applications.   In the simulation experiments 
described below, TPS interpolation was used to find point correspondence by choosing 40 points on the source surface to 
act as fiducials.  The known displacements at these nodes were then interpolated to all surface nodes using TPS.   

The Laplace, diffusion, and TPS methods for finding point correspondence described above were tested on two 
simulation data sets and a breast phantom.   

2.3 Simulation experiments 

To perform a controlled test of the methods described above on a breast-shaped surface, a CT image volume of a 
pendant breast (courtesy of the Dept. of Radiology, University of California-Davis) was segmented to create a source 
surface consisting of 6,313 points.  Two types of deformations were simulated by assuming different contact geometries 
of an air bladder being inflated against the breast surface.  Circular and rectangular cross-sectional areas of a Gaussian 
stress distribution positioned along the lateral aspect of the breast were used to define Type 2 boundary conditions for a 
finite element-based deformation; the base was made to be affixed to the chest wall.  The displacement solutions, based 
on a three-dimensional linear elastic model of a Hookean solid, were applied to create the target surfaces for the two 
simulations (Figure 1). 

a b c
Figure 1. Breast surface point sets.  (a) Source surface extracted from CT volume of a breast.  (b) Target surface 

generated from first simulation using circular cross-section of a Gaussian stress distribution. (c) Target 
surface generated from second simulation using rectangular cross-section of a Gaussian stress 
distribution.  The correspondence between the source and target surfaces was determined using the 
Laplace, diffusion, and TPS methods. 

2.4 Phantom experiments 

A breast phantom was constructed to test the point correspondence methods with real-world data.  The phantom was 
fabricated from an 8% w/v solution of polyvinyl alcohol that was frozen in the upper half of a 2-liter beverage container 
for 16 hours.  After 8 hours of thawing, thirty-four 1-mm stainless steel ball bearings were implanted directly under the 
surface of the resulting cryogel to act as fiducials.   

The phantom was then imaged inside a custom-built rectangular chamber designed to deliver compression by means of 
an air bladder placed against the surface of the phantom (Figure 2).  CT images (512 x 512 x 174, 0.54 x 0.54 x 1 mm 
voxel spacing) were acquired with the phantom at three different states of mechanical deformation (undeformed, 50% of 
maximum bladder pressure, and full inflation).  Triangular surface meshes were obtained by semi-automatic 
segmentation of the image volumes using the surface extraction tools in ANALYZE 6.0 (Mayo Clinic, Rochester, MN), 
and the coordinates of the fiducial centroids were localized.  These meshes contained approximately 8127, 6777, and 
8260 nodes, respectively. 
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Figure 2.  Experimental system for image data acquisition. A polyvinyl alcohol cryogel is placed within a 
Plexiglas chamber with its surfaces held in place against the walls. Compression is delivered through an 
air bladder (arrow) inflated manually through a bulb adapted from a standard sphygmomanometer. 

The Laplace, diffusion, and TPS methods were tested on the phantom surface meshes.  For the TPS method, 30 of the 
fiducials was used in the interpolation and the four remaining fiducials were reserved for validation.  The fiducials used 
in interpolation and validation were selected such that the distribution for both groups over the surface was roughly even 
and included the deformed region.  

2.5 Validation 

In order to assess the accuracy of the simulation and phantom experiments, the target registration error (TRE) was 
calculated.  The TRE measures the error between the correspondence determined by the registration method and the true 
correspondence [11].    For the simulation experiments, the TRE was calculated as the Euclidean distance between the 
corresponding target points determined by the Laplace, diffusion, or TPS method and the true target points.  Since the 
true correspondence between the source and target surfaces was known, the TRE was calculated for each source node, 
and the average and maximum were reported.  For the phantom experiment, the TRE was calculated using the centroids 
of the bead fiducials implanted directly under the phantom surface.  Since the “gold standard” correspondence was 
known only at the fiducials, the TRE could only be calculated at these locations. 

In addition, since one crucial step in both the Laplace and diffusion methods is to find point correspondence between the 
source and target isocontours (step 6 of algorithm summary), we evaluated how well the SCP algorithm performed in 
this step for the simulation data.  To accomplish this, the SCP method was given a set of source isocontours and their 
true corresponding target contours, and the error (the Euclidean distance between the true target point and the 
corresponding target point determined by SCP) was calculated. 

3. RESULTS
3.1 Simulation 1 (circular deformation source) 

The Laplace and diffusion equations were solved over the surfaces generated from simulation 1 (cranial-caudal 
deformation source with maximum displacement of 33 mm) to find point correspondence between the source and target 
breast surfaces.  For comparison, TPS interpolation using 40 simulated fiducials was also used to find point 
correspondence.  The accuracy of each method was assessed by calculating the TRE at each surface node (Figure 3). 
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The results (Table 1) indicated that the Laplace method performed more accurately overall than the diffusion method; 
however, the area with the highest amount of error differed.  When the Laplace method was used, the deformed region 
had the highest error, whereas when the diffusion method was used, the area farthest from the diffusion source had the 
highest error.  (In this case, since the diffusion source was located in the nipple area, the highest error occurred in the 
chest wall region.)  The TPS interpolation had the lowest error overall, and the error distribution over the surface was 
related to the locations of the simulated fiducials. 

The results given above pertain to a simulated compression with a maximum displacement of approximately 33 mm.  
Since this amount of compression may be larger than is needed for many applications and may introduce other unwanted 
effects for MIE due to non-linear elastic behavior, the point correspondence methods were also tested for lesser amounts 
of compression.  The TRE for different amounts of compression when the Laplace method was used to find point 
correspondence is shown in Figure 4.  The TRE appears in Figure 2 and increases linearly with more compression. 

The mean and maximum error for the isocontour point correspondence determined by the SCP algorithm (detailed in 
methods section) was calculated (Figure 5).  The isocontour correspondence given by the SCP algorithm had a 
maximum error of about 5 mm for the maximum compression of 33 m.

(a) (b) 

(c)

TRE (m) 

Figure 3.  TRE displayed for breast simulation 1 (circular deformation source) when (a) Laplace equation, 
(b) diffusion equation, and (c) TPS interpolation were used to find point correspondence.  The TPS 
method resulted in the lowest error overall (mean TRE 0.4 mm), followed by the Laplace method 
(mean TRE 2.3 mm) and diffusion method (max TRE 4.5 mm).  The highest TRE is found in the 
deformed region when the Laplace method is used and in the base when the diffusion method is 
used. 
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Figure 2. Maximum TRE (solid line) and mean TRE (dotted line) when the Laplace method was used to find point 
correspondence between the source and target surfaces at different levels of compression.  A deformation 
of 100% indicates a maximum displacement of approximately 33 mm.  The TRE seems to increase 
linearly with respect to the amount of deformation 

Figure 5. Evaluation of the accuracy of the SCP method used to find isocontour correspondence.  The mean error of 
the SCP method (dotted line) is compared to the mean error of the Laplace method (solid line) when SCP 
method was used to find isoncontour correspondence for simulation 1 data at different levels of 
compression.  (A deformation of 100% indicates a maximum displacement of approximately 33mm.)   
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3.2 Simulation 2 (rectangular deformation source) 

When the Laplace, diffusion, and TPS interpolation methods were used to find point correspondence between the breast 
surfaces generated by simulation 2 (a more realistic simulation using a rectangular deformation source with a maximum 
displacement of 13 mm), the results (Figure 6) were very similar to those from simulation 1.  However, the TRE for all 
three methods (Table 1) was slightly lower, possibly due to the lower degree of compression simulated.   

(a) (b) 

(c)

TRE (m) 

Figure 3. TRE displayed for breast simulation 2 (rectangular deformation source) when (a) Laplace equation, 
(b) diffusion equation, and (c) TPS interpolation were used to find point correspondence.  The TPS 
method resulted in the lowest error overall (mean TRE 0.3 mm), followed by the Laplace method 
(mean TRE 1.0 mm) and diffusion method (mean TRE 2.1 mm).  The results are similar to that of 
simulation 1 
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3.3 Phantom 

The Laplace and diffusion methods were used to determine point correspondence between the noncompressed and 
compressed surfaces of a breast phantom.  The results were validated by calculating the TRE at 34 fiducials located 
directly below the surface of the phantom.  For comparison, TPS was used to interpolate the displacements of 30 
fiducials to all surface nodes, and the TRE was calculated using the 4 remaining fiducials.   

The results for a 50 and 100% compression (with a maximum displacements of about 20mm and 36 mm, respectively) 
are shown in Table 2.  As in the simulations, the Laplace method performed better overall than the diffusion method and 
had lower TRE.  The TRE for the TPS interpolation was lower than that for the Laplace and diffusion methods, but 
varied with the number and locations of fiducials used in the interpolation.  

(a) (b) 

(c)

Figure 4. Breast phantom surfaces (a) before compression, (b) at 50% compression with maximum 
displacement of .020 m, and (c) at 100% compression with maximum displacement of .036 m.)  Lines 
indicate isocontours at different values of k.  Black nodes at the nipple and base indicate the nodes 
assigned boundary values.   
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Table 1. TRE for different point correspondence methods tested on breast surfaces generated from simulation 1 
(point deformation source with max displacement of 33 mm) and simulation 2 (rectangular 
deformation source with max displacement of 13 mm) breast surfaces.  The Laplace method 
outperformed the diffusion method, while the TPS method performed best of all.   

Simulation 1  Simulation 2 
Max TRE (mm) Mean TRE (mm) Max TRE (mm) Mean TRE (mm) 

Laplace 14.6 2.3 4.6 1.0 
Diffusion 24.2 4.5 10.3 2.1 
TPS (40 fiducials) 7.6 0.4 2.6 0.3 

Table 2. TRE for different point correspondence methods tested on breast phantom at approximately 50% and 
100% compression, with max displacements of 20 and 36 mm, respectively.  The Laplace method 
outperformed the diffusion method, while the TPS method performed best of all. 

50%  Compression 100% Compression 
Max TRE (mm) Mean TRE (mm) Max TRE (mm) Mean TRE (mm) 

Laplace 8.1 3.5 16.4 7.7 
Diffusion 11.9 3.9 19.4 7.9 
TPS * 1.5 1.1 2.6 1.9 

* TPS interpolation using 30 fiducials; 4 fiducials were used to calculate TRE. 

4. DISCUSSION 
Of the three registration methods evaluated, the TPS method consistently outperformed the Laplace and diffusion 
methods and had the lowest error for both the simulation and phantom experiments.   However, it is important to note 
that a comparison of the PDE-based methods and the TPS method is not entirely equal since the TPS method relies on 
fiducial information that the Laplace and diffusion methods do not require.  The performance of the TPS method is 
dependent on both the number and placement of these fiducials.  These results indicate that 30- 40 fiducials with an even 
distribution over the surface should be sufficient to register surfaces (with 13-33 mm deformations) with mean TRE 
ranging from 0.3 to 1.9 mm.  Although further studies are needed to determine the optimal number and placement of 
fiducials, experience suggests that increasing the number of fiducials in the areas with greatest deformation increases 
registration accuracy, and conversely, lowering the number of fiducials in those areas causes a significant decrease in 
accuracy.

The results indicate that the Laplace method is a useable surface registration method.  Although the Laplace method did 
not perform as accurately as the TPS method, it has the advantage of not requiring fiducial information.  However, one 
of the challenges of the Laplace method is determining the regions to which boundary conditions are assigned.  Accurate 
selection of these regions is important because the implicit correspondence between these regions is used by the Laplace 
equation to obtain the correspondence for the rest of the surface.  For these studies, the nipple region and the chest wall 
boundary regions were selected manually.  Further studies may be needed to find a method to automate the selection of 
the boundary regions and to evaluate how error in the selection of these regions affects the final registration error. 

Although the diffusion method does have certain advantages over the Laplace and TPS registration methods, several 
problems prevent it from becoming a viable surface registration technique.  The advantages of the diffusion method are 
that the correspondence near to the diffusion source (in this case, the nipple) is relatively accurate.  In addition, the 
diffusion method only requires boundary conditions to be set in one region (in this case, the nipple), unlike the Laplace 
method, which requires boundary conditions at two regions (nipple and chest wall base), and the TPS method, which 
requires multiple points of constraint (at 34 fiducials). 
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However, the diffusion method does not appear to be an effective surface registration method for the following reasons: 
the results indicate a substantial amount of error, the registration and resulting error are highly dependent on the 
diffusion parameters chosen (time step and final time in particular), and the diffusion parameters must be manually 
adjusted for each different surface mesh since there is no automated method to find the optimal diffusion parameters.  
Since the diffusion described by the PDE is by definition a non steady-state process, an optimal registration requires that 
the diffusion front should travel over the entire surface between the nipple and base and stop at the base in order to 
assure correspondence for as much as the surface as possible.  If the parameters are chosen such that the diffusion front 
does not reach the base, the correspondence for the regions not reached by the diffusion front cannot be constrained and 
must be interpolated from the displacements of the surrounding regions.  Conversely, if the diffusion front travels for too 
long a time, the solution over the surface approaches saturation, resulting in a flat gradient and lack of isocontours from 
which to establish correspondence.  Various modifications to the diffusion method employing curvature information and 
using different diffusion coefficients were tested, but none were successful.  Therefore, the sensitivity of the diffusion 
method to parameters and substantial amount of error may prevent the diffusion method from being a viable surface 
registration method.   

The TRE measured for each registration technique is not only dependent on the factors described above, but also on the 
amount of deformation of the target surface.  The results suggest that the TRE increases roughly linearly with the 
amount of deformation.  Using the simulation and phantom data presented here, one may be able to estimate the range of 
error expected when one of the described methods is used to register breast surfaces with a particular amount of 
compression.  Conversely, the maximum amount of compression that will yield a registration within a given error bound 
can be roughly estimated.  For the purposes of MIE, realistic compressions will be in the range of 1-2 cm. 

Another factor related to the amount of compression is the distribution of TRE over the surface.  The TRE was not 
evenly distributed; rather, the TRE in the areas of greatest deformation tended to be higher than the TRE elsewhere.  
Therefore, the mean TRE is not necessarily the best measure of the TRE over the surface; the max TRE may reflect the 
error in the deformed regions more accurately.  

In addition to the evaluation of the three registration methods, the performance of the SCP algorithm was evaluated since 
the matching of the isocontours extracted from the source and target surface is a crucial step of the PDE-based 
registration methods.  The results indicate that the amount of error the SCP algorithm contributes to the Laplace and 
diffusion methods is less significant small when compared to the total TRE (Figure 2) but is not negligible. 

In comparison to previous studies, the Laplace method outperformed the modified SCP method implemented by Schuler, 
et al. The data generated by first simulation described in this paper was also used to test the modified SCP method, and 
whereas the Laplace method had a maximum error of 14.6 mm for a deformation of 33 mm, the modified SCP method 
had a maximum error of 27.8 mm [5]. 

MIE is one application that may use the registration methods described in this paper, in this case to determine boundary 
conditions for its elasticity model.  Preliminary studies indicate that TPS is the most viable registration method, the error 
of which is within the bounds required for a successful elasticity reconstruction (approximately 0.3 mm).  The mean 
error for the Laplace registration method exceeds MIE’s error bounds, and although the target boundary conditions 
produced the Laplace method resulted in a viable mesh, the resulting elasticity reconstruction contained a considerable 
amount of error. The diffusion method could not be used in conjunction with MIE because of the extreme distortion of 
the target finite element mesh generated from the surface registration. 

5. CONCLUSION 
The results of the simulation and phantom experiments indicate that while TPS interpolation is the most accurate surface 
registration method of those evaluated, the Laplace method is a viable surface registration technique if fiducials are not 
available.  Although the TPS method consistently outperformed the Laplace method, its performance is dependent on the 
number and distribution of fiducials available.  Both the Laplace and TPS methods have been used in MIE to register 
breast surfaces in order to determine boundary conditions for its elasticity model.  In addition to MIE, the Laplace and 
TPS methods also have potential to be used for non-rigid registration in more general applications. 
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f ft d ib t ti l fl i th l fl id d l t t ti t d i i bto describe potential flow in thermal fluid and electrostatic systems and is given by:to describe potential flow in thermal fluid and electrostatic systems and is given by:to describe potential flow in thermal, fluid, and electrostatic systems and is given by:p , , y g y

h diff i i ll f i i i l d i i bThe diffusion equation allows for time varying potential and is given byThe diffusion equation allows for time�varying potential and is given byThe diffusion equation allows for time�varying potential and is given byThe diffusion equation allows for time varying potential and is given by q y g p g y

h � h i l h d i i d h diff i ffi i U f ll i 1where � represents the potential � the conductivity and � the diffusion coefficient Use following type 1where � represents the potential � the conductivity and � the diffusion coefficient Use following type 1where � represents the potential, � the conductivity, and � the diffusion coefficient. Use following type 1where � represents the potential, � the conductivity, and � the diffusion coefficient. Use following type 1 p p , y, g yp
b d diti t � 1 t i l d f b th th L l d diff i ti d t � 0 tboundary conditions: set �=1 at nipple nodes for both the Laplace and diffusion equations and set � =0 at l ff TPSboundary conditions: set �=1 at nipple nodes for both the Laplace and diffusion equations and set � =0 at Laplace Diff sion TPSboundary conditions: set �=1 at nipple nodes for both the Laplace and diffusion equations, and set � =0 at Laplace Diffusion TPSy � pp p q , � Laplace Diffusion TPSLaplace Diffusion
h ll f h L l ichest wall for the Laplace equationchest wall for the Laplace equationchest wall for the Laplace equation.chest wall for the Laplace equation.p q

3 E t t i t th d t t f Si l ti 2 ( t l d f ti di l t 13 )3 Extract isocontours on the source and target surfaces Simulation 2 (rectangular deformation source max displacement 13 mm)3 Extract isocontours on the source and target surfaces Simulation 2 (rectangular deformation source max displacement 13 mm)3. Extract isocontours on the source and target surfaces. Simulation 2 (rectangular deformation source, max displacement 13 mm)3. Extract isocontours on the source and target surfaces. Simulation 2 (rectangular deformation source, max displacement 13 mm)g g p
d b d l ( )4 D t i i t d b t d t t i t i S t i Cl t P i t (SCP)4 Determine point correspondence between source and target isocontours using Symmetric Closest Point (SCP)4 Determine point correspondence between source and target isocontours using Symmetric Closest Point (SCP)4. Determine point correspondence between source and target isocontours using Symmetric Closest Point (SCP).p p g g y ( )

5 I l di l i ll d5 Interpolate displacements at source isocontours to all source nodes5 Interpolate displacements at source isocontours to all source nodes5. Interpolate displacements at source isocontours to all source nodes.5. Interpolate displacements at source isocontours to all source nodes.p p
( ) (6 A b l l ti th t t i t ti (TRE) (F th i l ti d ib d b l th TRE6 Assess accuracy by calculating the target registration error (TRE) (For the simulations described below the TRE6 Assess accuracy by calculating the target registration error (TRE) (For the simulations described below the TRE6. Assess accuracy by calculating the target registration error (TRE).  (For the simulations described below, the TRE y y g g g ( ) ( ,

l l d h f d F h h h TRE l l l d h 34 fid i l )was calculated at each surface node For the phantom the TRE was only calculated at the 34 fiducials )was calculated at each surface node For the phantom the TRE was only calculated at the 34 fiducials )was calculated at each surface node. For the phantom, the TRE was only calculated at the 34 fiducials.)was calculated at each surface node.  For the phantom, the TRE was only calculated at the 34 fiducials.)p , y )

Obt i d t t h d t b d ditiObtain source and target mesh and set boundary conditionsObtain source and target mesh and set boundary conditionsObtain source and target  mesh and set boundary conditionsg y

� 1� = 1� = 1� = 1�

� 0 (L l� = 0 (Laplace� = 0 (Laplace�  0 (Laplace 
L l Diff i TPS

( p
Laplace Diffusion TPS

l ) Laplace Diffusion TPS
equation only) Laplace Diffusion TPS
equation only) pequation only)equation only)

( )Fi 3 E di t ib ti ( d b TRE) h th L l diff i d TPS th d d tFigure 3 Error distributions (measured by TRE) when the Laplace diffusion and TPS methods are used toFigure 3 Error distributions (measured by TRE) when the Laplace diffusion and TPS methods are used toFigure 3.  Error distributions (measured by TRE) when the Laplace, diffusion, and TPS methods are used to g ( y ) p , ,
fsource surface t t f i b f f i l i 1 ( ) d i l i 2 (b ) Th di ib i fsource surface target surface register breast surfaces from simulation 1 (top row) and simualtion 2 (bottom row) The error distributions forsource surface target surface register breast surfaces from simulation 1 (top row) and simualtion 2 (bottom row) The error distributions fortarget surface register breast surfaces from simulation 1 (top row) and simualtion 2 (bottom row). The error distributions forg register breast surfaces from simulation 1 (top row) and simualtion 2 (bottom row).  The error distributions for g ( p ) ( )

i l ti 1 d 2 i il F th L l th d th hi h t i th d f d i f thsimulation 1 and 2 are similar For the Laplace method the highest error occurs in the deformed region; for thesimulation 1 and 2 are similar For the Laplace method the highest error occurs in the deformed region; for thesimulation 1 and 2 are similar.   For the Laplace method, the highest error occurs in the deformed region; for the s u at o a d a e s a o t e ap ace et od, t e g est e o occu s t e de o ed eg o ; o t e
d ff h d h h h h b h d b f h h ddiff sion method the highest error occ rs near the base The error distrib tion for the TPS method ariesdiffusion method the highest error occurs near the base The error distribution for the TPS method variesdiffusion method, the highest error occurs near the base. The error distribution for the TPS method variesdiffusion method, the highest error occurs near the base.  The error distribution for the TPS method varies , g

S l L l /diff i i & d di th l t f th fid i lSolve Laplace/diffusion equations over source & target depending on the placement of the fiducialsSolve Laplace/diffusion equations over source & target depending on the placement of the fiducialsSolve Laplace/diffusion equations over source & target depending on the placement of the fiducials.p / q g depending on the placement of the fiducials.  p g p
E t t i t & fi d d� l Extract isocontours & find correspondence� values Extract isocontours & find correspondence� values Extract isocontours & find correspondence� values p

ff f d ff l l f h fFi 4 Eff t f diff t l l f i th fFigure 4 Effects of different levels of compression on the accuracy ofFigure 4. Effects of different levels of compression on the accuracy ofFigure 4.  Effects of different levels of compression on the accuracy of g p y
L l i i Th d TRE h h L l h d iLaplace registration The max and mean TRE when the Laplace method isLaplace registration The max and mean TRE when the Laplace method isLaplace registration. The max and mean TRE when the Laplace method isLaplace registration.  The max and mean TRE when the Laplace method is source target p g psource targetsource target

d t i t b t f f i l ti 1 t diff t l l f
g

used to register breast surfaces from simulation 1 at different levels oft t used to register breast surfaces from simulation 1 at different levels ofsource target used to register breast surfaces from simulation 1 at different levels of source target gsource targetg
i l d Th f TRE li l i hcompression are plotted The amount of TRE seems to grow linearly withcompression are plotted The amount of TRE seems to grow linearly withcompression are plotted. The amount of TRE seems to grow linearly withcompression are plotted.  The amount of TRE seems to grow linearly with p p g y

t t th t f irespect to the amount of compressionrespect to the amount of compressionrespect to the amount of compression.respect to the amount of compression.
Thi Pl S li (TPS) R i i M h d

p p
Thin Plate Spline (TPS) Registration MethodThin�Plate Spline (TPS) Registration MethodThin�Plate Spline (TPS) Registration MethodThin Plate Spline (TPS) Registration Methodp ( ) g

l d h f b l h d l k d b lTPS i t l ti d t i t th t f b i t l ti th di l t t k d b t l i tTPS interpolation was used to register the two surfaces by interpolating the displacements tracked by control pointsTPS interpolation was used to register the two surfaces by interpolating the displacements tracked by control pointsTPS interpolation was used to register the two surfaces by interpolating the displacements tracked by control pointsp g y p g p y p
ll f d Th di l h f d h d bli h h dto all surface nodes The displacements at each surface node were then used to establish the correspondenceto all surface nodes The displacements at each surface node were then used to establish the correspondenceto all surface nodes. The displacements at each surface node were then used to establish the correspondenceto all surface nodes. The displacements at each surface node were then used to establish the correspondencep p

b t th t f F th i l ti d ib d b l th di l t i t l t d i 40between the two surfaces For the simulations described below the displacements were interpolated using 40between the two surfaces For the simulations described below the displacements were interpolated using 40between the two surfaces. For the simulations described below, the displacements were interpolated using 40
CONCLUSION

, p p g
CONCLUSIONCONCLUSIONl di ib d f d d h TRE l l d h f d F h h CONCLUSIONevenly distributed surface nodes and the TRE was calculated at each surface node For the phantom CONCLUSIONevenly distributed surface nodes and the TRE was calculated at each surface node For the phantom CONCLUSIONevenly distributed surface nodes, and the TRE was calculated at each surface node. For the phantom CONCLUSIONevenly distributed surface nodes, and the TRE was calculated at each surface node. For the phantomy , p

i t th di l t t 30 fid i l i t l t d d th TRE l l t d t th i i 4experiment the displacements at 30 fiducials were interpolated and the TRE was calculated at the remaining 4experiment the displacements at 30 fiducials were interpolated and the TRE was calculated at the remaining 4experiment, the displacements at 30 fiducials were interpolated, and the TRE was calculated at the remaining 4e pe e t, t e d sp ace e ts at 30 duc a s e e te po ated, a d t e as ca cu ated at t e e a g
f d lfid cials ffiducials Th lt f th i l ti d h t i t i di t th t hil TPS i t l ti i th t tfiducials. The results of the simulation and phantom experiments indicate that while TPS interpolation is the most accuratefiducials. The results of the simulation and phantom experiments indicate that while TPS interpolation is the most accurateThe results of the simulation and phantom experiments indicate that while TPS interpolation is the most accuratep p p

f i i h d f h l d h L l h d b i bl i id f i isurface registration method of those evaluated the Laplace method may be a viable non rigid surface registrationsurface registration method of those evaluated the Laplace method may be a viable non�rigid surface registrationsurface registration method of those evaluated, the Laplace method may be a viable non�rigid surface registrationsurface registration method of those evaluated, the Laplace method may be a viable non rigid surface registrationg , p y g g
EXPERIMENTAL SETUP t h i if fid i l t il bl Th diff i th d d t t b bl i t ti th d dEXPERIMENTAL SETUP technique if fiducials are not available The diffusion method does not seem to be a usable registration method dueEXPERIMENTAL SETUP technique if fiducials are not available The diffusion method does not seem to be a usable registration method dueEXPERIMENTAL SETUP technique if fiducials are not available. The diffusion method does not seem to be a usable registration method dueEXPERIMENTAL SETUP q gEXPERIMENTAL SETUPS U

h hi h d h diffi l f h i diff i l h h h S h d i lto the high error and the difficulty of choosing diffusion parameters Although the TPS method consistentlyto the high error and the difficulty of choosing diffusion parameters Although the TPS method consistentlyto the high error and the difficulty of choosing diffusion parameters. Although the TPS method consistentlyto the high error and the difficulty of choosing diffusion parameters. Although the TPS method consistentlyg y g p g y
t f d th L l th d it f i d d t th b d di t ib ti f fid i loutperformed the Laplace method its performance is dependent on the number and distribution of fiducialsoutperformed the Laplace method its performance is dependent on the number and distribution of fiducialsSi l ti E i t outperformed the Laplace method, its performance is dependent on the number and distribution of fiducialsSimulation Experiments outperformed the Laplace method, its performance is dependent on the number and distribution of fiducialsSimulation Experiments p p p pSimulation Experiments

l bl h h l d h d h b d b f d
Simulation Experiments

il bl B th th L l d TPS th d h b d i MIE t i t b t f i d t
p

available Both the Laplace and TPS methods have been used in MIE to register breast surfaces in order toavailable Both the Laplace and TPS methods have been used in MIE to register breast surfaces in order toT h h d CT i l f d b d f Th available. Both the Laplace and TPS methods have been used in MIE to register breast surfaces in order toTo test these methods a CT image volume of a pendant breast was segmented to create a source surface The p gTo test these methods a CT image volume of a pendant breast was segmented to create a source surface TheTo test these methods, a CT image volume of a pendant breast was segmented to create a source surface. The
d i b d di i f i l i i d l

To test these methods, a CT image volume of a pendant breast was segmented to create a source surface. The
determine boundary conditions for its elasticity model

g p g
determine boundary conditions for its elasticity modeldetermine boundary conditions for its elasticity model.b t d l d 3D li l l ti H k lid d t t f d f ti i l t d b determine boundary conditions for its elasticity model.breast was modeled as 3D linearly elastic Hookean solid and two types of deformations were simulated by y ybreast was modeled as 3D linearly elastic Hookean solid and two types of deformations were simulated bybreast was modeled as 3D linearly elastic, Hookean solid, and two types of deformations were simulated byy , , yp y

i diff i f i bl dd b i i fl d i b f Th fi i l iassuming different contact geometries of an air bladder being inflated against breast surface The first simulationassuming different contact geometries of an air bladder being inflated against breast surface The first simulationassuming different contact geometries of an air bladder being inflated against breast surface. The first simulationassuming different contact geometries of an air bladder being inflated against breast surface. The first simulationg g g g

REFERENCES AND ACKNOWLEDGMENTSd i l ti f G i t di t ib ti hil th d d t l ti th REFERENCES AND ACKNOWLEDGMENTSused a circular cross section of a Gaussian stress distribution while the second used a rectangular cross section; the REFERENCES AND ACKNOWLEDGMENTSused a circular cross�section of a Gaussian stress distribution while the second used a rectangular cross�section; the REFERENCES AND ACKNOWLEDGMENTSused a circular cross section of a Gaussian stress distribution while the second used a rectangular cross section; the REFERENCES AND ACKNOWLEDGMENTSused a c cu a c oss sect o o a Gauss a st ess d st but o e t e seco d used a ecta gu a c oss sect o ; t e REFERENCES AND ACKNOWLEDGMENTSREFERENCES AND ACKNOWLEDGMENTS
h ll f d f b h h l f d h ld d d f lchest all as fi ed for both The res lting target s rface ser ed as the gold standard for error e al ationchest wall was fixed for both The resulting target surface served as the gold standard for error evaluationchest wall was fixed for both. The resulting target surface served as the gold standard for error evaluation.chest wall was fixed for both. The resulting target surface served as the gold standard for error evaluation.g g g

X P d t i A J Si D P Di R T C t bl d J S D “E ti ti f 3 D L ft V t i l D f ti f•X Papademetris A J Sinusas D P Dione R T Constable and J S Duncan “Estimation of 3 D Left Ventricular Deformation fromPh E i •X. Papademetris, A. J. Sinusas, D. P. Dione, R. T. Constable, and J. S. Duncan, Estimation of 3�D Left Ventricular Deformation fromPhantom Experiments X. Papademetris, A. J. Sinusas, D. P. Dione, R. T. Constable, and J. S. Duncan, Estimation of 3 D Left Ventricular Deformation from Phantom Experiments p , , , , ,Phantom Experiments
d l h l d l ” d l ( )

Phantom Experiments
Medical Images using Biomechanical Models ” IEEE Transactions on Medical Imaging 21 786 800 (2002)

p
Medical Images using Biomechanical Models ” IEEE Transactions on Medical Imaging 21 786�800 (2002)Medical Images using Biomechanical Models, IEEE Transactions on Medical Imaging, 21, 786�800 (2002).

h f b i d f l i l l h l l d 3
Medical Images using Biomechanical Models,  IEEE Transactions on Medical Imaging, 21, 786 800 (2002).

A phantom was fabricated from a polyvinyl alcohol cryogel and 34 1A phantom was fabricated from a polyvinyl alcohol cryogel and 34 1� C W W hi d M Mi “M d li i d d l h (MIE) h l i i i i ” IEEE T iA phantom was fabricated from a polyvinyl alcohol cryogel and 34 1� •C W Washington and M Miga “Modality independent elastography (MIE): a new approach to elasticity imaging ” IEEE TransactionsA phantom was fabricated from a polyvinyl alcohol cryogel and 34 1 •C W Washington and M Miga Modality independent elastography (MIE): a new approach to elasticity imaging IEEE Transactionsp p y y y g C. W. Washington and M. Miga, Modality independent elastography (MIE): a new approach to elasticity imaging,  IEEE Transactions g g , y p g p y ( ) pp y g g,
t i l t l b ll b i i l t d di tl d thmm stainless steel ball bearings were implanted directly under the M di l I i 23 1117 28 (2004)mm stainless steel ball bearings were implanted directly under the on Medical Imaging 23 1117 28 (2004)mm stainless steel ball bearings were implanted directly under the on Medical Imaging, 23, 1117�28 (2004).mm stainless steel ball bearings were implanted directly under the on Medical Imaging,  23, 1117 28 (2004).g p y g g, , ( )

f f d l h h d b d h b “ f h d ” d l ( ) ( )f t fid i l Th h t i d b CT i id •A Goshtasby “Registration of images with geometric distortions ” IEEE Transactions on Medical Imaging 26(1):60 64 (1988)surface to serve as fiducials The phantom was imaged by CT inside a •A Goshtasby “Registration of images with geometric distortions ” IEEE Transactions on Medical Imaging 26(1):60�64 (1988)surface to serve as fiducials The phantom was imaged by CT inside a A. Goshtasby, Registration of images with geometric distortions, IEEE Transactions on Medical Imaging, 26(1):60�64 (1988).surface to serve as fiducials. The phantom was imaged by CT inside a A. Goshtasby, Registration of images with geometric distortions,  IEEE Transactions on Medical Imaging, 26(1):60 64 (1988).p g y
D R S h l III J J O S L B M I Mi “A t ti f d th d f d f d b t ” P di fb il l h b d i d d li i •D R Schuler III J J Ou S L Barnes M I Miga “Automatic surface correspondence methods for a deformed breast ” Proceedings ofcustom built rectangular chamber designed to deliver compression •D R Schuler III J J Ou S L Barnes M I Miga Automatic surface correspondence methods for a deformed breast Proceedings ofcustom�built rectangular chamber designed to deliver compression D. R. Schuler III, J. J. Ou, S. L. Barnes, M. I. Miga, Automatic surface correspondence methods for a deformed breast,  Proceedings of custom�built rectangular chamber designed to deliver compression , , , g , p , gcustom built rectangular chamber designed to deliver compressiong g p
SPIE M di l I i 2006SPIE Medical Imaging 2006th h i bl dd (Fi 1) t th diff t l l f SPIE, Medical Imaging, 2006.through an air bladder (Figure 1) at three different levels of SPIE, Medical Imaging, 2006.through an air bladder (Figure 1) at three different levels of , g g,through an air bladder (Figure 1), at three different levels of

Q i h “ li i Sh i d li i f i ” h h i G i i f h l (2002)
g ( g ),

•H Q Dinh “Implicit Shapes: Reconstruction and Explicit Transformation ” Ph D Thesis Georgia Institute of Technology (2002)•H Q Dinh Implicit Shapes: Reconstruction and Explicit Transformation Ph D Thesis Georgia Institute of Technology (2002)d f i ( d f d 50% d 100% i fl i ) H. Q.Dinh, Implicit Shapes: Reconstruction and Explicit Transformation,   Ph.D. Thesis, Georgia Institute of Technology, (2002).deformation (undeformed at 50% and 100% max inflation) H. Q. inh, Implicit Shapes: Reconstruction and xplicit Transformation, Ph. . Thesis, Georgia Institute of Technology, ( 00 ).deformation (undeformed at 50% and 100% max inflation)deformation (undeformed, at 50%, and 100% max inflation).deformation (undeformed, at 50%, and 100% max inflation).( , , )
T i l f h d di t f th fid i l t idTriangular surface meshes and coordinates of the fiducial centroids Fi 1 C i h b f b tTriangular surface meshes and coordinates of the fiducial centroids Figure 1 Compression chamber for breast Thi k t d b Whit k Y I ti t A dTriangular surface meshes and coordinates of the fiducial centroids Figure 1. Compression chamber for breast This work was supported by a Whitaker Young Investigator AwardTriangular surface meshes and coordinates of the fiducial centroids Figure 1.  Compression chamber for breast This work was supported by a Whitaker Young Investigator Award.g g p This work was supported by a Whitaker Young Investigator Award.
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bt i d d d t t t th i t ti th d phantom Arrow indicates inflation bladderwere obtained and used to test the registration methods phantom Arrow indicates inflation bladderwere obtained and used to test the registration methods phantom. Arrow indicates inflation bladder.were obtained and used to test the registration methods. phantom.  Arrow indicates inflation bladder.
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